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networks, coexpression to rescue RNA interference– or CRISPR-
CAS9–induced reduction of endogenous transcripts, and expression 
of ORFs carrying a mutation of interest to allow measurement of the 
mutation effect in the absence of the wild-type background.

High-level gene coverage, combined with the versatility of 
Gateway cloning, and full access to OC clones make this collection 
a unique and valuable resource for the scientific community that 
should aid in the functional characterization of new protein targets 
and testing of disease-relevant mutations on a large scale. The OC 
resource will continue to be expanded in the future to increase 
human gene coverage, provide additional isoforms where avail-
able, provide clones with medically relevant mutations and add 
additional species, including ORFs from Xenopus and Drosophila.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (http://dx.doi.org/10.1038/nmeth.3776).
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TeraFly: real-time three-dimensional 
visualization and annotation of terabytes 
of multidimensional volumetric images

To the Editor: New sample preparation and high-throughput light-
sheet microscopy techniques1 are increasingly capable of generating 
multidimensional (3D and higher) images easily exceeding the tera-
byte size. This has posed a significant challenge for scalable inter-
active visualization and quantitative annotation of such big image 
data. A common practice is to design a data-streaming and visualiza-
tion tool to supply and display small parts of an image volume when 
needed2,3. However, existing tools allow only 2D slice-based render-
ing of 3D image stacks. Such 2D approaches not only are time con-
suming and low throughput but also bring bias to the understand-
ing of intrinsic 3D properties of bioimage data4. A free, open-source 
and cross-platform software tool for true 3D visualization and 3D 
annotation of very large multidimensional volumes is highly desired 
(Supplementary Note 1).
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To fill this gap, we have developed TeraFly software for interactive 
3D visualization of terabytes of 3D and 4D (3D spatial information 
plus color) images, as well as 5D (4D plus time) image series, with 
subsecond response times from both local and remote data sources 
(Supplementary Note 2). TeraFly instantly translates simple com-
puter-mouse actions (e.g., drags and scrolls) performed directly in 
the volumetric space of a 3D viewer into translation, rotation and 
zoom for the 3D volumes of interest (VOIs) displayed at the appro-
priate image resolution (Supplementary Videos 1 and 2). TeraFly 
uses only 336 megabytes of computer memory to display a 1-tera-
voxel image stack with three color channels (i.e., 10,0003 voxels) 
and would use only 480 megabytes for a 1-petavoxel, three-channel 
image stack (i.e., 100,0003 voxels) (Supplementary Note 2).

Although TeraFly adopts an often-used multiresolution pyra-
mid image organization for fast data accessing (Fig. 1a) and is 
able to generate such hierarchical data much more efficiently than 
BigDataViewer2 (2–7× the speed and 30–74× the memory savings) 
(Supplementary Note 3), we believe that the optimization of data 
organization alone is insufficient to achieve a real-time response 
when a true 3D rendering (e.g., real-time 
maximum intensity projection or alpha 
blending) is considered. Thus, we imple-
mented two critical techniques to boost 
TeraFly (Supplementary Note 4). The 
first is a ‘mean shift of mean shift’ method 
to accurately and instantly (typically <10 
ms) estimate the 3D VOI when the user is 
zooming in on the displayed image content 
(Fig. 1b). This solves the challenging prob-
lem of mapping the 2D user input (i.e., the 
mouse position on the screen) to the 3D 
VOI the user sees at a higher magnification 
level. The second is an effective fetch-and-
display strategy to instantly show an inter-
polated low-resolution version of the VOI’s 

Figure 1 | Overview of TeraFly image and surface-
object visualization. (a) 3D image exploration 
based on progressively higher-resolution VOIs 
fetched from a multiresolution tiled image 
pyramid data structure and displayed in distinct 
3D viewers (one per pyramid layer) synchronized 
for zooming in and zooming out. In this example, 
an entire mouse brain image about 1 terabyte 
(TB) in size was recursively downsampled five 
times until the entire image could fit into the 3D 
viewer at the lowest resolution. (b) Schematic 
illustration of the 3D VOI estimation–based 
‘mean shift of mean shift’. First, the mean-shift 
method is applied on the voxel intensity along 
each of the shooting rays for the calculation 
of the corresponding bio-entity 3D locations. 
Then the mean-shift strategy is again applied 
on these 3D locations for the calculation of the 
VOI center. (c) Image of L7-GFP whole mouse 
cerebellum (110.1 gigabytes) with an overlay 
displaying 220,800 TeraFly-curated Purkinje cells 
as 3D markers. (d) Image of adult rat neuron 
acquired with two-photon microscopy with 
overlaid TeraFly-assisted 3D tracings generated at 
different resolution scales and the corresponding 
octree-based 3D curve point representation.
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TeraFly enables quantitative analysis of big image data with mini-
mal human effort. The annotation of displayed biological structures 
is done directly in the volumetric space of a 3D image stack (hence 
the term ‘3D annotation’) with simple computer-mouse gestures 
such as a single click or a single stroke. This includes the genera-
tion and curation of various surface objects such as 3D markers and 
tubes that are used, for instance, for cell counting or the tracing of 
long neurites (e.g., in a whole-brain image) or, further, to generate a 
gold standard to feed semi- or fully supervised image analysis algo-
rithms, as well as for proofreading or evaluating the output of these 
algorithms (Supplementary Note 5). We also designed a dedicated 
image-exploration modality to boost users’ proofreading perfor-
mance (Supplementary Video 3) and used it to generate the most 
complete and precise map of Purkinje cells in a whole mouse cerebel-
lum ever obtained5 (Fig. 1c and Supplementary Note 6). Compared 
with other tools based on 2D annotation, our approach was consid-
erably faster and more precise (Supplementary Videos 4 and 5 and 
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Supplementary Note 6). TeraFly also allows us to perform efficient 
3D annotation for complicated biological structures (e.g., rat, mouse 
and human neurons) in very large multidimensional images (Fig. 1d, 
Supplementary Video 6 and Supplementary Note 6).

We implemented these 3D annotation functionalities by leveraging 
the built-in ‘Virtual Finger’ algorithms of Vaa3D6, which map users’ 
inputs in the 2D plane of a computer screen to the 3D locations of 
the corresponding biological structures. However, this alone would 
not allow the efficient handling of the millions of 3D object points 
(e.g., marker centers and curve nodes) that are likely to be produced 
by the computerized analysis of big images. Thus, we used an octree 
data structure to encode the annotated (or automatically produced) 
3D objects (Fig. 1d). We generated a lookup table for efficient rep-
resentation, search and resampling of such 3D annotation data with 
respect to any VOI (Supplementary Note 7).

We have applied TeraFly to several huge image data sets from 
different modalities at the Allen Institute for Brain Science, Janelia 
Research Campus of the Howard Hughes Medical Institute, the 
European Human Brain Project and other places. To our knowledge, 
TeraFly is the first free, open-source, cross-platform software tool for 
3D integrated visualization and annotation of massive image data.

TeraFly has been implemented in C++ and is included in the 
default Vaa3D installation available at http://www.vaa3d.org/.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (http://dx.doi.org/10.1038/nmeth.3767).
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Supplementary Note 1. Related software 

Driven by continuous advances in microscopy and related technologies, bioimage informatics that 

tackles problems such as the computational analysis of biological images is becoming more and 

more important (Peng, 2008; Walter, et al., 2010; Long, et al., 2012). Over the last 20 years, a 

number of tools for visualizing, annotating, and quantitatively analyzing multidimensional 

biological image data have been developed. They include public-domain tools such as ScanImage 

(Pologruto, et al., 2003), µManager (Stuurman, et al., 2010), MicroPilot (Conrad, et al., 2011), 

ImageJ (Abrmoff, et al., 2004), Vaa3D (Peng, et al., 2010), Ilastik (Sommer, et al., 2011), CellProfiler 

(Carpenter, et al., 2006), CellOrganizer (Murphy, 2012), CellExplorer (Long, et al., 2009), 

BrainExplorer (Lau, et al., 2008), ClearVolume (Royer, et al., 2015), and many commercial software 

suites such as Zen (Zeiss), Amira (VSG), Imaris (Bitplane), ImagePro (MediaCybernetics), 

Neurolucida (MBF Bioscience).  

The major limitation of previous tools is that when applied to the terabyte-size images currently 

generated by modern microscopy techniques (Silvestri, et al., 2012; Tomer, et al., 2014) it is hard 

to load the entire image volume into computer memory quickly, let alone the fact that most current 

computers do not even have enough memory to hold such big image data. Consequently, scalable 

solutions that use multiresolution approaches have been recently proposed (Saalfeld, et al., 2009; 

Jeong, et al., 2010; Pietzsch, et al., 2015; Amat, et al., 2015; Tinevez & Pietzsch, 2015). They assume 

that image data are stored in a hierarchical data structure where each hierarchical level represents 

a different resolution that can be independently loaded upon requests. Moreover, the data at each 

resolution are stored in such a way that only the data corresponding to the Region of Interest (ROI) 

have to be loaded into main memory for visualization or processing. Being able to select the 

resolution and the ROI makes it possible to deal with datasets exceeding the available resources 

(Peng, et al., 2014).  

CATMAID (Saalfeld, et al., 2009) allows rapid, uninterrupted browsing of multi-terabyte data sets 

and concurrent large-scale data annotation involving tens of millions of data points, even when 

accessing the data remotely through the internet. CATMAID was initially developed for visualizing 

and annotating large electron microscopy data sets generated in the field of connectomics, but it 

was recently extended to support large light microscopy image data sets with up to five dimensions 

(three spatial dimensions, color and time) (Amat, et al., 2015). CATMAID and its branches are 

accessible through an internet browser and display image data superimposed with cell-lineage 

data points in a tri-view arrangement (XY, YZ and XZ slices of the specimen). SSECRETT (Jeong, et 

al., 2010) is a 2D slice-based volume exploration and manual annotation tool for extremely large-

scale neuroscience datasets. It is based on a client-server architecture where the dataset resides 

on the server side and the client can request an arbitrary 2D cross-section view of the dataset. 

BigDataViewer (Pietzsch, et al., 2015) is a Fiji (Pietzsch, et al., 2012) plugin to interactively navigate 

and visualize virtual 2D slices from very large 5D terabyte-sized images from both local and remote 

data sources. The tool is based on a custom HDF5 based data format that is optimized for fast 

arbitrary re-slicing of the image at various scales. HDF5 (The HDF Group, 2014), the last version of 

the Hierarchical Data Format is a data model, library, and file format for storing and managing data. 

It supports an unlimited variety of datatypes, and is designed for flexible and efficient I/O and for 
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high volume and complex data. MaMuT (Tinevez & Pietzsch, 2015) is a Fiji plugin that provides 

interactive visualization, annotation, tracking and lineaging of very large, multiview image 

datasets. MaMuT builds on TrackMate (Pietzsch, et al., 2012), a Fiji plug-in for single particle 

tracking, and uses BigDataViewer both as a data backend and as a visualization frontend. 

Unfortunately, the tools aforementioned are all based on 2D cross-sectional views or a combined 

display with an arbitrary-angle cutting plane, which is often insufficient to observe complex 3D 

structures and the relationship among multiple objects (e.g., cells) in a 3D or higher-dimensional 

image. This leads to the inability to efficiently explore the complicated 3D image content and thus 

to input user-specified information of the observed image patterns directly in the 3D space (Long, 

et al., 2012). Hence, it is desirable to have efficient tools that integrate 3D visualization and 

annotation functions but that can scale well on very large (terabyte-sized) images. Although a few 

scalable tools provide preliminary capabilities of 3D visualization and annotation modules in the 

context of very large scale of image datasets, these tools are limited owing to high expense of 

licenses (Arivis (AG), Amira (VSG), Imaris (Bitplane)) and infrastructures (Paraview (Kitware 

Inc.)). This presents an obstacle for the unbiased, high-throughput and quantitative analysis of 

bioimage data and creates tremendous need for the development of new techniques that help 

explore very large 3D data directly and efficiently without expensive virtual reality devices and/or 

parallel computing infrastructures. 

To our knowledge, TeraFly is the first free, open-source, and cross-platform software tool for true 

3D visualization and 3D annotation of very large multidimensional volumes. In Table 1.1, we 

compare TeraFly with the best available tools in the field. We limit our comparison to software 

that (i) has been reported to visualize multidimensional (up to 5D) data sets whose size exceeds 1 

terabyte on commonly available hardware (therefore Table 1.1 excludes all the tools mentioned in 

the first paragraph of this section and the Paraview software (Kitware Inc.)); and (ii) natively 

supports time series (therefore Table 1.1 excludes SSECRET). 

 

 Arivis             
(AG) 

BigDataViewer 

(Pietzsch, et al., 2015) 
CATMAID 

(Saalfeld, et al., 2009) 
CATMAID  

(Amat, et al., 2015) 
MaMuT       

(Tinevez & Pietzsch, 2015) TeraFly 

rendering both 2D and 3D 
2D (arbitrary 

reslicing) 
2D (tri-view) 2D (tri-view) 

2D (arbitrary 
reslicing) 

both 2D and 3D 

annotation approach  2D slice-by-slice N/A 2D slice-by-slice 2D slice-by-slice 2D slice-by-slice 3D  

custom image format  SIS (a) BDV HDF5 tile scheme (b) Keller Lab Block BDV HDF5 

hierarchy of 
TIFFs or Vaa3D 

raw files;        
and BDV HDF5 

license proprietary open open open open open 

Table 1.1. Visualization software for multidimensional multi-terabyte image data. (a) proprietary data format. (b) Data 
stored as small 2D-tiles representing a 2D-scale pyramid following a primitive naming scheme. 
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Supplementary Note 2. Visualization of Big-Image-Data 

2.1 Introduction 
TeraFly builds on top of the free, open-source, cross-platform Vaa3D system and extends its 

powerful 3/4/5D image rendering capabilities (Peng, et al., 2010) to images of potentially 

unlimited size. To achieve this goal, similarly to other tools designed for big image data 

visualization (Supplementary Note 1), TeraFly adopts a multiresolution pyramid image that 

enables fast access of small parts of an image volume at different scales (Supplementary Note 3). 

Such hierarchical data organization alone, however, is insufficient to achieve a real-time response 

when a true 3D rendering (e.g. real-time maximum intensity projection or alpha blending) is 

considered. Thus, throughout the 3D exploration of the image, other critical solutions intervene to 

boost the visualization performance (Supplementary Notes 4 and 5). In this supplement, we 

describe the overall 3D image exploration approach and quantitatively characterize the 

performance of our tool in terms of memory usage and visualization response time.  

 

2.2 3D image exploration 
Once the image is opened in TeraFly, the 3D image exploration starts by loading and displaying the 

entire image content of the highest (and coarsest) multiresolution pyramid level, which by 

construction can fit into the 3D viewer (Supplementary Note 3). As the user zooms-in with the 

mouse scroll wheel into this coarse resolution image, TeraFly instantly (<10 ms typically) 

generates the 3D Volume of Interest (VOI) best approximating the region currently viewed 

(Supplementary Note 4), then loads the higher resolution data corresponding to this VOI and 

renders it in a new 3D viewer quickly (Supplementary Note 5). Further zooms-in are processed 

in the same way until the lowest level of the pyramid is reached. To zoom-out, TeraFly goes back 

up through the image pyramid and redisplays the previously viewed VOIs. Leveraging the powerful 

of Vaa3D’s multiple 3D viewers, TeraFly selectively displays and hides the 3D viewers 

corresponding to different VOIs, thus giving the clue of a smooth 3D exploration of the image 

(Supplementary Videos 1-2).  

 

2.3 Memory usage 
The 3D image exploration strategy previously described allows avoiding more complicated data 

synchronization and caching techniques, which would need to be tailored to the underlying 

hardware infrastructure. Instead, a simple caching strategy is used: throughout the navigation, the 

displayed 3D viewers are cached in the graphic card memory and quickly restored both when 

zooming-out, and when zooming-in a previously viewed VOI. Assuming 8 bits per pixel for display, 

this requires storing in the graphic card memory (𝑘 + 1) × 𝐵𝑥 × 𝐵𝑦 × 𝐵𝑧 × 𝑐 × 𝐵𝑡 bytes at most, 

being 𝑘 the number of pyramid layers, 𝐵𝑥, 𝐵𝑦, 𝐵𝑧 and 𝐵𝑡 the dimensions of the 5D viewer along 𝑥, 

𝑦, 𝑧 (space) and 𝑡 (time) axes (default value is 256(𝑥) × 256(𝑦) × 256(𝑧) × 1(𝑧)), and 𝑐 the 

number of channels. Based on the criterion to choose 𝑘 (Supplementary Note 3), and after simple 

algebraic manipulations, the maximum memory requirement for a cubic image of 𝑁 pixels is 

⌈(log 𝑁1/3 − log 𝐵) log2 𝑒 + 1⌉ × 𝐵3 × 𝑐 bytes where we chose 𝐵𝑥 = 𝐵𝑦 = 𝐵𝑧 = 𝐵 and 𝐵𝑡 = 1 (i.e. 
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one time-point loaded and displayed at a time). Remarkably, this corresponds to only 336 

megabytes of computer memory for an image stack with one teravoxel and three color channels 

(i.e. 10,0003 voxels), and to only 480 megabytes for 1 petavoxel three-channels image stack (i.e. 

100,0003 voxels). 

 

2.4 Benchmarks 
We tested the visualization of various 3D/4D image volumes of rat neurons and mouse brains with 

sizes ranging from 0.3 gigabyte to 2.5 terabyte (Table 2.1). The statistics for each test case were 

obtained by an experienced user on at least 100 trials of randomly selected target VOIs in 

arbitrarily determined scales of the respective images. The total time for generation, loading and 

displaying of a 3D VOI is reported in Fig. 2.1a for a MacBook Pro Retina connected to a 16 terabyte 

QNAP TS-420 Network Attached Storage (NAS) via 1 Gbps LAN network. Similarly, we tested the 

visualization of four 5D image stacks of zebrafish embryos with sizes ranging from 5 gigabyte to 

1.3 terabyte (Table 2.2). Performance times for this experiment are reported in Fig. 2.1b. 

Remarkably, in all the test cases considered the time scaled constantly on image size and remained 

always within 1 second, regardless of the overall size and dimensions (3D, 4D, or 5D) of the data 

sets tested, thus demonstrating that TeraFly can potentially smoothly visualize even larger multi-

dimensional image stacks. 

 

 

Dataset Dimensions (𝑥 × 𝑦 × 𝑧 × 𝑐) Size (gigabyte) 

Purkinje cells (a) 800 × 800 × 512 × 1 0.3 

Rat neuron (b) 9,640 × 6,952 × 179 × 2 24.0 

Whole mouse cerebellum (a) 8,249 × 3,662 × 3,646 × 1 110.1 

Mouse hippocampus (a) 9,722 × 8,378 × 5,145 × 1 419.1 

Whole mouse brain (a) 14,261 × 6,814 × 7,828 × 1 760.7 

Whole mouse brain (c) 40,000 × 30,000 × 700 × 3 2,520.0 

Table 2.1. 3D/4D image volumes used to test the visualization performance. (a) Acquired using Confocal Light Sheet 
Microscopy (Silvestri, et al., 2012) for the Human Brain Project (courtesy of F.S. Pavone, L. Sacconi, L. Silvestri). (b) 
Acquired using 2-photon microscopy (courtesy of R. Tisen). (c) Acquired using TissueCyte 2-photon imaging system 
(courtesy of H. Zeng).  

 

Dataset Dimensions (𝑥 × 𝑦 × 𝑧 × 𝑐 × 𝑡) Size (gigabyte) 

Betzig fish data K  992 × 794 × 59 × 1 × 100 4.7 

Betzig fish data B1  992 × 992 × 231 × 2 × 200 90.1 

Betzig fish data B2  992 × 992 × 231 × 2 × 1,000 454.6 

Keller  1,556 × 700 × 122 × 2 × 5,000 1,328.8 

Table 2.2. 5D light-sheet microscopy image volumes used to test the visualization performance. 
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(a) 

(b) 

Fig. 2.1. (a) Average total time for generation, loading and displaying of a 3D VOI for six 3D/4D image stacks with size 
ranging from 0.3 gigabyte to 2.5 terabyte (Table 2.1). (b) Average total time for generation, loading and displaying of 
a 3D VOI of one time frame at a time on four 5D image stacks with size ranging from 5 gigabyte to 1.3 terabyte (Table 
2.2). For each test case, average generation (CPU), loading (I/O) and displaying (GPU) times are reported using 
different shades of gray with error bars being twice the standard deviation of the data. 
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Supplementary Note 3. File Format 

3.1 Introduction 
TeraFly adopts a multiresolution tiled pyramid image format that enables fast access of small parts 

(tiles) of an image volume at different resolution scales. Section 3.2 gives the specification of this 

format, Section 3.3 describes how to export a dataset using TeraConverter (included in Vaa3D), 

and Section 3.4 provides benchmarks results for some of the datasets used in our experiments. 
 

3.2 Format specification 
Each TeraFly dataset contains a set of 3D image tiles, stored either as multipage TIFF (Adobe 

Developers Association, 1992) or Vaa3D raw files (Peng, et al., 2010). The tile files are organized 

in a hierarchy of nested folders composed by 6 levels (see Fig. 3.1). It is important to note that by 

making individual tiles available as separate 3D image stacks and in an accessible format (i.e. in a 

standard 3D TIFF or the Vaa3D raw file format that is used in several very large scale neuroscience 

projects), we enable very flexible ways to access the data at both global and local scales at any time 

when a user needs such data, as well as providing more robustness of the stored files in cases of 

possible damage of the storage media (i.e. hard-drive failure). Our format also makes it possible to 

save storage-space when the image content is sparse.  

The complete specification of our hierarchical data format is given by the 6 levels of the hierarchy, 

defined as follows: 

 ℓ : contains the scale layers of the multiresolution pyramid, each stored into a folder named     

RES(dim𝑦 × dim𝑥× dim𝑧), with dim𝑦, dim𝑥, and dim𝑧 being the dimensions (in voxels) of 

the image along 𝑦, 𝑥, and 𝑧, respectively; 
 

 𝑡 : contains the time points stored into folders named T_tttttt, with tttttt being 6 digits (0-9) 

identifying the coordinate along 𝑡 (000000 for 𝑡 = 0);  
optional: if there is just one time point, this level can be omitted (see Fig. 3.1, 4D format) 

 

 𝑐 : contains the channels stored into folders named CH_cc, with cc being the channel index; 
optional: for grayscale or color (RGB) images, this level can be omitted (see Fig. 3.1, 3D format) 

 

 𝑦 : contains the tiles grouped by rows, stored into separate folders named in ascending 

alphanumeric order.  The higher the alphanumeric value, the higher the 𝑦 coordinate; 
optional: folder names can optionally encode physical coordinates following the yyyyyy convention, where yyyyyy are 6 

digits (0-9) identifying the coordinate along 𝑦 in terms of 𝑢 space units. For instance, if 𝑢 = 0.1 𝜇𝑚 and yyyyyy = 168270, 

then the row is associated to the physical coordinate 𝑦 = 16.827 𝑚𝑚.  
 

 𝑥 : contains the tiles grouped by columns, stored into separated folders named in ascending 

alphanumeric order. The higher the alphanumeric value, the higher the 𝑥 coordinate;  
optional: folder names can optionally encode physical coordinates following the yyyyyy_xxxxxx convention, where yyyyyy 

and xxxxxx are 12 digits (0-9) identifying the coordinate 𝑦 and 𝑥, respectively, in terms of 𝑢 space units. 
 

 𝑧 : contains the 3D image tiles stored either as compressed multipage TIFF (.tif) or as 

uncompressed Vaa3D raw (.raw) files, named in ascending alphanumeric order. The higher 
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the alphanumeric value, the higher the 𝑧 coordinate. Each file is a 3D image whose 

dimensions along 𝑥, 𝑦, and 𝑧 are 𝑇𝑥, 𝑇𝑦, and 𝑇𝑧, respectively.  

critical: 𝑇𝑦 must be the same for all the tiles contained in the current row level 𝑦, and it defines the height (in voxels) of 

that row (all rows sum to dim𝑦). 𝑇𝑦 must be the same for all the tiles contained in the current column level 𝑥, and it 

defines the width (in voxels) of that column (all columns sum to dim𝑥). 𝑇𝑧 can be different for the image files of the 

current level 𝑧, but they must sum to dim𝑧.  
 

optional: image filenames can optionally encode physical coordinates following the yyyyyy_xxxxxx_zzzzzz convention, 

where yyyyyy, xxxxxx and zzzzzz are 18 digits (0-9) identifying the coordinate 𝑦, 𝑥, and 𝑧, respectively, in terms of 𝑢 

space units. 

 

 

 
Fig. 3.1. Schema of 3D, 4D, and 5D TeraFly formats. In the 3D example, an entire mouse brain image of size about 1 

terabyte has been recursively downsampled 𝑘 = 6 times. In the same example, the tile subdivision at the various levels 

of the pyramid has only illustrative purposes, and does not reflect the actual number of tiles along 𝑥, 𝑦 and 𝑧. 

 

In addition to the 3D image files, each TeraFly dataset also contains the following metadata files: 

 vmap.bin: a binary file stored at the level ℓ of the hierarchy of folders and containing the 

image data that are instantly fetched and displayed when a volume is opened in TeraFly. 

This file is generated automatically when a volume is opened for the first time, and the 

image data are fetched from the appropriate resolution scale according to the actual 

settings of the 3D viewer dimension (the higher the 3D viewer size, the higher the 

resolution)(see Supplementary Note 5, Section 5.3.4(ii)); 

Nature Methods doi:10.1038/nbt.3767



 

 cmap.bin: a binary file stored at the level 𝑐 of the hierarchy of folders and containing internal 

TeraFly metadata allowing efficient access to the image channels. This file is generated 

automatically when a dataset is exported for TeraFly with TeraConverter. If this file is 

missing, TeraFly can automatically regenerate it upon request (see Supplementary Note 

5, Section 5.3.1); 

 mdata.bin: a binary file stored at the level 𝑦 of the hierarchy of folders and containing 

internal TeraFly metadata allowing efficient access to the 3D image tiles. This file is 

generated automatically when a dataset is exported for TeraFly with TeraConverter; If this 

file is missing, TeraFly can automatically regenerate it upon request (see Supplementary 

Note 5, Section 5.3.1). 

3.3 Exporting data sets for TeraFly with TeraConverter 
Based on the underlying graphic hardware capabilities, TeraConverter generates the pyramid 

image as follows. Let be 𝐼 the original, highest-resolution, very large-sized image to be imported. 

Starting from 𝐼, another 𝑘 images {𝐼(1), 𝐼(2), . . . , 𝐼(𝑘)} are obtained by recursively downsampling by 

two 𝐼(𝑗) from 𝐼(𝑗−1) ∀𝑗 =  1, . . . , 𝑘, where 𝐼(0)  =  𝐼. This process is iterated until the lowest-

resolution image 𝐼(𝑘)  fits within the 3D viewer of size 𝐵𝑥 × 𝐵𝑦 × 𝐵𝑧. These define the maximum 

size in voxels of displayable image data in the 3D renderer and can be set by the user from TeraFly 
(default is 256(𝑥) × 256(𝑦) × 256(𝑧) voxels) (see Supplementary Note 5, Section 5.3.4(ii)). 

To get started, let’s open TeraConverter from Vaa3D by  

 

which brings up the following dialog. 

 

The dialog is divided into four sections (from top to bottom): (i) input form; (ii) output/conversion 

form; (iii) help box; and (iv) status bar with start/stop button. 

Advanced Vaa3D Menu Big-Image-Data TeraConverter 
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In the input form, the user should first specify the input image format from the drop-down menu 

and then the path where the image files are stored. Supported input formats are: 

 TIFF (series, 2D): a folder containing a series (1+) of 2D TIFF files; 

 TIFF (3D): single multipage 3D TIFF file; 

 TIFF (tiled, 2D): three-leveled 𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile 

composed by a series of 2D TIFF files; 

 TIFF (tiled, 3D): three-leveled 𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile 

composed by a series of multipage (3D) TIFF files; 

 TIFF (tiled, 4D): four-leveled 𝑐-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile 

composed by a series of multipage (3D) TIFF files; 

 Vaa3D raw: single Vaa3D raw file containing a 3D image; 

 Vaa3D raw (series, 2D): a folder containing a series (1+) of 2D Vaa3D raw files; 

 Vaa3D raw (tiled, 3D): three-leveled 𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile 

composed by a series of Vaa3D 3D raw files; 

 Vaa3D raw (tiled, 4D): four-leveled 𝑐-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile 

composed by a series of Vaa3D 3D raw files. 

For time series, the user should check the Time series of option, provided that the time points are 

stored according to the level 𝑡 specification of the TeraFly format (see Section 3.2). 

Once the input path is inserted, simply pressing ENTER on the keyboard will import the inputted 

volume and prepare for the conversion step, which brings up the following updated dialog. 
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In the output form, the user should select the output format from the drop-down menu, and 

provide the output path where the image files will be stored.  

Supported output formats are: 

 TIFF (tiled, 2D): ℓ-𝑡-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile composed by a 

series of 2D TIFF files; 

 TIFF (tiled, 3D): ℓ-𝑡-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile composed by a 

series of multipage (3D) TIFF files; 

 TIFF (tiled, 4D): ℓ-𝑡-𝑐-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile composed by a 

series of multipage (3D) TIFF files; 

 Vaa3D raw (tiled, 3D): ℓ-𝑡-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile composed 

by a series of Vaa3D 3D raw files; 

 Vaa3D raw (tiled, 4D): ℓ-𝑡-𝑐-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile composed 

by a series of Vaa3D 3D raw files. 

For all the output formats considered, the 𝑡 level is not inserted in the output hierarchy in case the 

input image consists of a single time point. 

Other advanced options, which we suggest to leave at their default values, are: 

 Resolutions: these are the resolution scales to be produced at level ℓ of the hierarchy (see 

Section 3.2) and are automatically determined by TeraConverter following the approach 

described at the beginning of this section. Optionally, the user can select which resolutions 

have to be produced, or add more to the ones already in the list; 

  Tile dims: these are the individual 3D image tile dimensions 𝑇𝑥, 𝑇𝑦, and 𝑇𝑧 (see Section 3.2). 

Optionally, the user can set them to values higher than the actual image dimensions (e.g. 

2000 × 2000 × 2000 in the example considered) to produce a nontiled pyramid, i.e. a 

pyramid with just one big 𝑦-𝑥-𝑧 image block; 

 downsampling method: the method used to generate the downsampled resolution scales of 

the pyramid. Supported methods are: mean(2x2x2) that computes the average intensity for 

each 2 × 2 × 2 image block , and max(2x2x2) that computes the maximum intensity in the 

same block; 

At the bottom of the conversion form, TeraConverter shows in the Estimated RAM usage field a 

precise estimate of the computer memory that will be used during the conversion process. This is 

computed as follows: 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝐴𝑀 𝑢𝑠𝑎𝑔𝑒 (𝑔𝑖𝑔𝑎𝑏𝑦𝑡𝑒𝑠) =
dim𝑥× dim𝑦× dim𝑐× 𝑏𝑝𝑝 × 2𝑘∗

8 × 109
 

where dim𝑥 and dim𝑦 are the input image size along 𝑥 and 𝑦, dim𝑐  is the number of channels, 𝑏𝑝𝑝 

is the number of bits per pixel (usually 8 or 16), and 𝑘∗ is the highest resolution scale index among 

those that have to be produced (𝑘∗ = 0 if only the original resolution scale is selected). 

Once ready, the user can start the conversion by pressing the Start button. The progress bar 

displayed at the bottom of the file dialog will show the status of the process along with an estimate 
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of the remaining time. When the conversion ends, a message will inform the user and provide the 

overall time elapsed (see screenshot below). 

 

 

3.4 Benchmarks 
We have benchmarked export to TeraFly’s format TIFF(tiled,3D) using default export settings (see 

Section 3.3) from datasets of different sizes (see Table 3.1) in order to provide users with rough 

estimates of export times for their own datasets. Moreover, to demonstrate the efficiency of our 

conversion tool, we compared processing time, computer memory usage, and output image size to 

that of BigDataViewer when converting the same datasets using similar settings. 

For BigDataViewer, we used the following procedure as suggested by Pietzsch et al. (2015): 

 from ImageJ, we opened a dataset using the Virtual Stack option. Specifically, for series of 2D 

TIFF files, we used File > Import > Image Sequence… and checked the Virtual Stack option, 

whereas for single multipage 3D TIFF files, we used File > Import > TIFF Virtual Stack; 

 from ImageJ, we launched the BigDataViewer conversion tool using Plugins > BigDataViewer 

> Export Current Image as XML/HDF5; 

 from the Export for BigDataViewer file dialog, we always left the default options (automatic 

mipmap setup and use deflate compression on) before launching the conversion process.  

All benchmarks were repeated at least twice for each experiment, and they were run on a MacBook 

Pro Retina (early 2015) with 2.5 GHz Intel Core i7 (4 cores), 16 gigabyte RAM, 500 gigabyte Solid 

State Drive (SSD). All benchmarks used Java version 1.8.0_66 with 8 GB RAM maximum heap size 
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as in Pietzsch et al. (2015). To minimize the input/output conflicts, the input images were read 

from an external 2.0 terabyte USB 3.0 hard drive, whereas the output image were saved on the 

internal MacBook SSD drive. The benchmark results are summarized in Table 3.2. 

 

Dataset Dimensions (𝑥 × 𝑦 × 𝑧 × 𝑐) Image format  

Purkinje cells 1 (a) 1,020 × 1,020 × 1,020 × 1 multipage 3D compressed TIFF (8 bits, grayscale) 

Purkinje cells 2 (a) 1,020 × 1,020 × 1,020 × 1 series of 2D compressed TIFFs (8 bits, grayscale) 

Purkinje cells 3 (a) 1,951 × 2,122 × 608 × 1 multipage 3D compressed TIFF (8 bits, grayscale) 

Purkinje cells 4 (a) 1,951 × 2,122 × 608 × 1 series of 2D compressed TIFFs (8 bits, grayscale) 

Rat neuron gray (b) 9,640 × 6,952 × 179 × 1 series of 2D compressed TIFFs (8 bits, grayscale) 

Rat neuron color (b) 9,640 × 6,952 × 179 × 3 series of 2D compressed TIFFs (24 bits, RGB) 

Mouse cerebellum (a) 8,249 × 3,662 × 3,646 × 1 series of 2D compressed TIFFs (8 bits, grayscale) 

Table 3.1. 3D/4D image volumes used to test the dataset export performance. (a) Acquired using Confocal Light Sheet 
Microscopy (Silvestri, et al., 2012) for the Human Brain Project (courtesy of F.S. Pavone, L. Sacconi, L. Silvestri). (b) 
Acquired using 2-photon microscopy (courtesy of R. Tisen).  

 

Experiment Raw data size 
Output pyramid image size (a) Memory usage Export time 

TC BDV TC BDV TC BDV 

Purkinje cells 1 1.06 GB 0.62 GB (𝐿=3) 0.59 (𝐿=3) 0.04 GB 1.87 GB 1 m 2 m 

Purkinje cells 2 1.06 GB 0.62 GB (𝐿=3) 0.59 (𝐿=3) 0.04 GB 8.21 GB 1 m 18 m 

Purkinje cells 3 2.52 GB 1.23 GB (𝐿=5) 1.20 GB (𝐿=5) 0.07 GB 3.89 GB 2 m 4 m 

Purkinje cells 4 2.52 GB 1.23 GB (𝐿=5) 1.20 GB (𝐿=5) 0.07 GB 8.17 GB 2 m 29 m 

Rat neuron gray 12.00 GB 5.44 GB (𝐿=5) 6.09 (𝐿=7) 1.07 GB 8.63 GB 11 m 27 m 

Rat neuron color 35.99 GB 15.63 GB (𝐿=5) error (b) 3.22 GB error (b) 30 m error (b) 

mouse cerebellum 110.14 GB 28.97 GB (𝐿=6) 30.14 GB (𝐿=7) 0.97 GB 8.61 GB 89 m 201 m 

Table 3.2. Benchmark results for TeraConverter (TC) and BigDataViewer (BDV) when exporting datasets of different 
sizes and formats.  (a) 𝐿 denotes the number of pyramid levels. (b) the message was “only 8, 16, and 32-bit images are 
currently supported” 

On average, TeraConverter was 7x faster and 74x more memory efficient than BigDataViewer, and 

yielded a slightly better compression ratio (0.44 compared to 0.45 of BigDataViewer). In two cases 

(Purkinje cells 2 and Purkinje cells 4) BigDataViewer was particularly slower, perhaps due to an 

issue triggered by the different input format (multipage 3D TIFF). In another case (Rat neuron 

color) BigDataViewer displayed an error message indicating that it currently does not support 

export from color images (see Table 3.2). However, even after excluding these challenging yet 

important use-cases, TeraConverter, on average, was still 2x faster and 30x more memory efficient 

than BigDataViewer, thus demonstrating the efficiency of our conversion tool.  
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Supplementary Note 4. Instant zoom-in 

4.1 Introduction 
Throughout the exploration of the volumetric image, TeraFly translates user mouse drags and 

scrolls into Volumes of Interest (VOIs) to be displayed from the appropriate pyramid layer 

(Supplementary Note 2). Whereas a multiresolution pyramid data structure is necessary for 

effective data accessing, it alone would not allow to achieve real-time performance when a true 3D 

rendering (e.g. real-time maximum intensity projection or alpha blending) is considered. Thus, in 

this supplement we propose two critical techniques that make TeraFly much faster. These two 

techniques are a robust random-access VOI estimation method and an effective fetch-and-display 

strategy that gives the clue that the system has instantly responded to the request to find a 3D VOI, 

while the full image content is loaded quickly. 

 

4.2 Mean-shift of mean-shift (MSMS)  
We propose a “mean-shift of mean-shift” (MSMS) method to accurately estimate 3D VOIs that a 

human user likes to see when the user is zooming-in or out the displayed contents in a 3D viewer 

of Vaa3D. In the context of TeraFly, MSMS replaces the built-in “Virtual Finger” algorithms 

(referred as ‘bVF’ below) of Vaa3D (Peng, et al., 2014), which map users’ inputs in the 2D plane of 

a computer screen to the 3D locations of bio-entities (for example, cells, neurons or microtubules) 

in the volumetric space of a 3D image stack. We noted that bVF algorithms might not be robust to 

produce accurate VOIs when there were a lot of background noises in the displayed image area.  

The MSMS algorithm is described as follows. First, we hypothesize that the user is zooming-in on 

a region containing one or more bio-entities which appear brighter than the surrounding 

background. Thus, we define a circle of radius 𝑑 centered on the viewport’s center, and then 

randomly generate 𝑛 2D points (seeds) within it. Some seeds will fall on (or very close to) the 

displayed bio-entities, whereas others will fall on the background. Then, for each seed, we consider 

the intensity profile along the shooting ray orthogonal to the screen, and apply the mean-shift (MS) 

method (Fukunaga & Hostetler, 1975) to find the mode of the intensity distribution. The MS 

algorithm begins by finding the center of mass (CoM) of the projection ray (see Algorithm 1, line 

4), and then repeatedly reestimates a CoM using progressively smaller intervals around the 

proceeding CoM until convergence (see Algorithm 1, lines 5-11). Here, we hypothesize that the 

point to which MS converges will provide the missing third coordinate to map the 2D seed, which 

is defined on the screen, to the 3D point in the volumetric image. When there are multiple color 

channels, MS is applied to each color channel separately and the 3D location is estimated by finding 

the one with the maximal intensity among candidates detected for all colour channels 

independently. After this step, all the 𝑛 2D seeds have been mapped to the corresponding 3D 

locations. However, only the 3D points corresponding to the bio-entities displayed on the 

foreground will form a dense cluster, whereas the others will fall on random background locations. 

To robustly estimate the center of this cluster from all the 3D points, we apply a formulation of the 

MS algorithm suited for clustering. At every algorithm iteration, each 3D point shifts to the CoM 

calculated in a sphere of radius 𝑟 (see Algorithm 1, lines 23-30). The algorithm ends when there 

no more shifts are detected (see Algorithm 1, line 31), i.e. when all 3D points converge to the center 
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of the densest cluster of 3D points. Intuitively, this can be viewed as finding the mode of a data 

point distribution, with data points belonging to the three-dimensional Euclidean space. Finally, 

we calculate the VOI as a box centered on the mode with size 𝐵𝑥 × 𝐵𝑦 × 𝐵𝑧, which corresponds to 

the 3D viewer size (default value is 256(𝑥) × 256(𝑦) × 256(𝑧)).  We typically used 𝑛 = 20, 𝑑 =

10% of the viewport diagonal, and 𝑟 = 100.   

We evaluated the accuracy of the MSMS based VOIs, compared to those generated based on both 

human observation and bVF. In the scale of 1 (wrong) to 10 (perfect), MSMS had an average score 

9.6 over 100 trials, which was nearly perfect compared to what a user would expect. On the 

contrary, bVF achieved an average score 7 in similar comparison. MSMS outperformed bVF 

especially on the lower-resolution layers of the images with low contrast and SNR (Fig. 4.2). Next, 

we compared the computation time of a 3D VOI with MSMS and bVF for six different image stacks 

of various sizes (Fig. 4.1b). Remarkably, the computation time for MSMS was well below 10 

milliseconds in all the test cases as for bVF, thus indicating we successfully eliminated one 

substantial bottleneck in terabytes data visualization without introducing any human detectable 

delay.  

 

4.3 Fetch-and-display strategy  
We developed a “fetch-and-display” method to ensure a very fast response from TeraFly when new 

data was visualized. The goal for this method was that when the mouse scrolls and zooms-in to a 

VOI, the higher resolution image content of such VOI will be retrieved from the file system and 

displayed as quickly as possible for fast and smooth exploration of the image. We accomplished 

this task by performing, in parallel, two different operations: (i) reusing part of the currently 

viewed content to display instantly a linearly interpolated preview of the VOI; and (ii) loading from 

the pyramid image only the blocks that contain the required image content. More formally, let be 

𝑉𝑂𝐼ℓ be the VOI currently viewed that belongs to the pyramid image level ℓ (𝑉𝑂𝐼ℓ ≡ 𝐼(𝑘) when the 

exploration starts, with 𝐼(𝑘) being the highest pyramid image level in a pyramid of 𝑘 + 1 layers) 

and 𝑉𝑂𝐼ℓ′
the VOI to be retrieved and displayed from the higher resolution layer ℓ’, with ℓ’≤ ℓ 

(usually ℓ’= ℓ − 1). Then, TeraFly interpolates to the resolution of ℓ’ the portion of 𝑉𝑂𝐼ℓ that 

intersects with 𝑅𝑂𝐼ℓ′
and displays the result. This gives the clue that the system has correctly and 

instantly responded to the request, and also makes more acceptable to wait for the full image to be 

loaded. Meanwhile, in parallel, TeraFly loads the image content from the blocks of the pyramid 

image layer ℓ’ that intersect with 𝑉𝑂𝐼ℓ′
and updates the display with the higher resolution data.  
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  (a) 

(b) 

Fig. 4.1. (a) Schematic illustration of the 3D VOI estimation based MSMS. (i) First, the mean-shift method is applied on 

the voxel intensity along each of the 𝑛 shooting rays for the calculation of the corresponding bio-entity 3D locations. 

(ii) Then, the mean-shift strategy is again applied on these 3D locations for the calculation of the VOI center. (b) 

Average 3D-ROI computing time with MSMS and bVF for six 3D/4D image stacks with size ranging from 0.3 gigabytes 

to 2,520 terabytes (see Table 2.1). 
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Fig. 4.2. (a) The lowest-resolution layer of a whole mouse brain image in which only a few cells of the hippocampus 

express Green Fluorescent Protein (GFP). (b) Zoom-in using MSMS. (c) Zoom-in using bVF (Peng, et al., 2014).  
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Supplementary Note 5. User Guide 

5.1 Introduction 
TeraFly is a tool developed on top of Vaa3D (Peng, et al., 2010) to allow real-time (i.e. subsecond) 

visualization and assisted analysis of terabytes of multidimensional volumetric images. The tool 

has been implemented in C++ with Qt and OpenGL and it is freely and publicly available both as 

open-source and as binary package along with the main Vaa3D distribution. 

TeraFly comes with an open data format based on a multiresolution tiled pyramid image that 

enables fast access of small parts (tiles) of an image volume at different resolution scales. This data 

format is based on the open-standard TIFF format (Adobe Developers Association, 1992), and 

consists of a set of image files organized into a hierarchy of 𝑛 + 1 levels of folders (𝑛 being the data 

dimensionality, e.g. for 3D datasets 𝑛 = 3 up to 𝑛 = 5 for 5D datasets). The complete specification 

of this data format is described in the Supplementary Note 3 along with the procedure to export 

a dataset to the TeraFly’s format using our tool TeraConverter (included in Vaa3D). 

This supplement describes common use cases for TeraFly and the TeraFly software itself 

(installation, user interface, available functionalities, etc.). Since TeraFly is in ongoing 

development, this supplement might not include the most recent updates, or it could be based on 

a slightly different naming of the various functionalities available. In this supplement, we use the 

version 2.1.0 of the TeraFly software. 

 

5.2 Installation 
From versions 2.0.0 and later, TeraFly is directly integrated into Vaa3D. Thus, it is only required to 

install Vaa3D (versions 3.*) to be able to use TeraFly. The procedure for installing Vaa3D and 

launching TeraFly is described as follows: 

1. go to http://vaa3d.org. 

2. click on the ‘Download’ tab. 

3. from the pull-down menu, choose the appropriate program corresponding to your 

operating system (Mac, Linux or Windows) and download it to your local computer. The 

Vaa3D program is often compressed as a ZIP file and you need to unzip it before use.  

 for Linux and Windows, unzip the program into a new folder before use.  

 for Mac, unzip the program to generate an installer program for standardized 

installation. Double-click the installer program to launch a GUI of installation, and 

enter the user password to complete the installation, which will put the Vaa3D 

program under the /Applications/vaa3d folder on the local computer. 

4. run the Vaa3D program to launch the GUI.  

 for Windows, double-click the program vaa3d_msvc.exe.  
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 for Linux, on a command-line console, enter the folder that contains the unzipped 

program and type ./start_vaa3d.sh command to run.  

 for Mac, double-click the program /Applications/vaa3d/vaa3d64.app (without 

displaying the log information) or on the command line console run the command 

/Applications/vaa3d/vaa3d64.app/Contents/MacOS/vaa3d64 to start the GUI with the 

running log information displayed. 

5. launch TeraFly from  

 

 

5.3 User Interface 
TeraFly has a friendly and usable User Interface (UI) designed to maximize the image visualization 

area while providing a number of components and functionalities to boost 3D visualization and 

annotation. The overall scheme of the UI is depicted in Fig. 5.1. In the following subsections, we 

describe in detail each component of the TeraFly’s UI. The components marked as ‘advanced’ 

correspond to advanced use cases, whose description is out of the scope of this supplement.  

 

Fig. 5.1. The graphical user interface of Vaa3D-TeraFly that has a number of components (1)~(9). (1) Menu bar. (2) 

Menu toolbar. (3) Tab switch. (4) TeraFly’s exploration controls. (5) TeraFly’s proofreading controls. (6) Interactive 

help box. (7) Status bar. (8) Vaa3D 3D viewport and visualization controls. (9) 3D object annotation toolbar. 

 

Advanced Vaa3D Menu Big-Image-Data TeraFly 
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5.3.1 Menu bar 
The TeraFly’s menu bar contains the following menus: 

 

 open a TeraFly volume 

 open a HDF5 (BigDataViewer) volume 

 open a recent volume 

 close the current volume 

 load 3D annotations from a .ano file 

 save 3D annotations to a .ano file 

 

                              : volume import options (advanced) 
- regenerate metadata files mdata.bin and cmap.bin (see Section 3.2) 

- regenerate volume map file vmap.bin (see Section 3.2) 

                              : annotation display options 
-                              : marker display options 

- size 

- VOI extra margin size (advanced) 

-                              : curve display options 
- aspect (3D tube / 2D skeleton) 

- skeleton width 

- virtual space size (auto / unlimited) (advanced) 

                              : image exploration options (advanced) 
-                                 : directional shifts options (advanced) 

-                                 : fetch-and-display strategy (preview/streaming/direct) (advanced) 

 

                                          : annotation utilities for 3D markers (e.g. cells) 
-                                 : export to Vaa3D/TeraFly .apo from other formats (e.g. VTK, MaMuT) 

-                                 : analyze / compare .apo annotation files 

                              : generation of time series (advanced) 

 

 show message log (only for developers) 

 set message verbosity level (only for developers) 

                                                         : shows version info and changelog. 

On MacOS, the menu bar is automatically integrated into the OS menu bar. On other operative 

systems (e.g. Windows, Linux), the menu bar is right above the Menu toolbar (Section 5.3.2). 

File TeraFly Menu 

Options TeraFly Menu 

Utilities TeraFly Menu 

Debug TeraFly Menu 

Help TeraFly Menu 

Import 

Annotations 

Markers 

Curves 

Navigation 

Shifts 

Fetch-and-display 

Annotations Markers 

Convert 

Analyze 

Time-series 
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5.3.2 Menu toolbar 
The menu toolbar is described as follows: 

 

(i) open a new volume (TeraFly or HDF5) through a File Dialog or opens a recently volume from 

the displayed pull-down menu containing a list of the recently opened volumes. 

(ii) close the currently opened volume. 

(iii) display or hide the TeraFly’s 3D object annotation toolbar (Section 5.3.9). 

(iv) display the tool’s info and changelog. 
 

5.3.3 Tab switch 
The tab switch is described as follows: 

 

 TeraFly controls: shows the TeraFly controls (Section 5.3.4 and 5.3.5); 

 Vaa3D controls: shows the Vaa3D controls (Section 5.3.8); 

 Volume’s info: shows a panel containing information on the currently opened image (e.g. 

size, voxel dimensions, tile dimensions). 

 

5.3.4 TeraFly exploration controls 
The TeraFly’s exploration controls are grouped into three categories: (a) “Viewer”, to set up the 3D 

viewer dimensions and image resolutions; “Zoom-in/out”, to set up advanced options for the 

mouse-scroll Google-Earth like zoom-in and zoom-out; and “Volume Of Interest (VOI)’s 

coordinates”, to check and specify the portion of the volume to be displayed.  

Individual controls are described as follows.  

 

(i) (advanced) image resolution composed by a pull-down menu and a heat map like bar. From 

the pull-down menu, the user can select the resolution at which he/she wants to display the 
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currently viewed volume / currently selected volume of interest (VOI). The heat map like 

bar indicates the currently displayed image resolution (the "hotter", the higher); 

(ii) set the Vaa3D 3D viewer x-y-z (space) and t (number of time points) dimensions, i.e. the 

amount of image data displayed at the time. The larger, the more graphic card memory is 

used and the slower is the visualization. Suggested range is [100,300] for x-y-z and [1-10] 

for 𝑡; 

(iii) (advanced) choose from pull-down menu the method used to generate the volume of 

interest (VOI) when zooming-in with the mouse scroll; 

(iv) (advanced) set the zoom-in threshold value (see Vaa3D controls > Zoom & Shift > Zoom, 

Section 5.3.8) to trigger the image resolution increase when zooming-in with the mouse 

scroll. The default is 50. Set it to 100 to disable this feature, so that TeraFly will never 

increase the image resolution when zooming-in; 

(v) (advanced) set the zoom-in cache sensitivity value. This corresponds to the overlap 

between the VOI to be displayed and the VOI already in the cache required to instantly 

recover and display the VOI from the cache, instead of loading new data from the storage. 

Sensitivity of 0% means that TeraFly will always use the cache, whereas 100% means that 

TeraFly will always load the image data from the storage; 

(vi) (advanced) set the zoom-out threshold value (see Vaa3D controls > Zoom & Shift > Zoom, 

Section 5.3.8). Similarly to the zoom-in threshold value, this changes the zoom factor (see 

Vaa3D controls > Zoom & Shift > Zoom, Section 5.3.8) that triggers the image resolution 

decrease when zooming-out with the mouse scroll. The default value is 0. Set it to -100 to 

disable this feature, so that TeraFly will never decrease the image resolution when 

zooming-out; 

(vii) reset all zoom-in/out controls to default values; 

(viii) interactive 3D reference system. During 3D visualization, this indicates how the displayed 

image is oriented in the 3D space and allows the user to change the volume orientation by 

dragging the displayed cube with the mouse towards the desired direction. In proofreading 

mode, this indicates the position of the displayed block in the whole image (Section 5.3.5); 

(ix) indicates the currently displayed time point and the total number of available time points 

(5D data only); 

(x) directional shifts. These buttons (one pair for every axis x-y-z-t) allow the translation of the 

3D viewer throughout the image along the corresponding axes by an amount that can be 

changed from Options > Navigation > Directional shifts (see Section 5.3.4(x)). Default is 50% 

for x-y-z and 0% for t; 

(xi) (advanced) specify the volume of interest absolute spatial coordinates, i.e. referred to the 

highest resolution image. This corresponds to use the Vaa3D volume-cut scrollbars and can 

be used to specify a VOI to be displayed at a higher resolution (i.e. using the Resolution 

controls, see (i)) or to be analyzed in proofreading mode. 
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5.3.5 TeraFly proofreading controls 
TeraFly’s proofreading modality allows to perform a stoppable/resumable block-by-block scan of 

the entire volume (or a selected VOI) to proofread automatic cell counts or neuron reconstructions. 

When the proofreading modality is on, it is not possible to change the image resolution with zoom-

in/zoom-out or by using the directional shifts (Section 5.3.4(x)). 

The proofreading panel UI’s elements are depicted and described as follows. 

 

(i) start or terminate the proofreading session. 

(ii) QuickScan. Scrolling the mouse wheel in this area allows instant inspection of the blocks to 

roughly check hundreds of blocks per minute and load only the nonempty ones. Pressing 

“Enter” loads the currently viewed block. 

(iii) maximum intensity projection along 𝑧 of the block being scanned. It also displays the block 

coordinates and the number of annotations points (corresponding to cells or neuron 

segments), to allow the user deciding whether to load (or skip) this block. 

(iv) dialog displayed when a proofreading session starts (see (i)). It allows to choose the 

following settings to set up the proofreading session: 

- VOI: the volume of interest to proofread. This can be modified using the Vaa3D 

volume cut scrollbars controls (Section 5.3.8) or the TeraFly’s VOI inputs (Section 

5.3.4(xi)); 

- Block size: block dimensions along 𝑥, 𝑦, and 𝑧. They can be modified using the 

TeraFly’s 3D viewer dimensions (Section 5.3.4(ii)). The larger the block, the fewer 

blocks will be needed for the block-by-block scan of the selected VOI; 
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- Resolution: the resolution scale at which the image should be scanned. The coarsest 

the resolution, the fewer the blocks needed for the scan of the VOI; 

- Scan pattern: the pattern that defines the scan-path. For instance, “X -> Y -> Z” means 

to move along the 𝑥 axis first and, when reached the rightmost block, move along the 

𝑦 axis and, when reached the bottommost block, move along the 𝑧 axis, and so on; 

- Block overlap: the overlap (in percentage) between two adjacent blocks. Some 

overlap is usually needed to avoid missing errors in the boundary regions; 

- Per-block time: the inputted estimate of per-block analysis time, which serves to 

calculate the overall estimated time for the entire proofreading session (see last 

point of this list); 

- Volume coverage: the coverage (in percentage) of the selected VOI with respect to 

the whole image; 

- No. of blocks: the calculated total number of blocks. This depends on the VOI, Block 

size, Block overlap, and Resolution inputs; 

- Estimated time: the overall estimated time for the entire proofreading session. This 

is calculated as  Per-block time × No. of blocks. 

 

5.3.6 Interactive helpbox 
This text box displays helpful information on the various components of the TeraFly’s UI. Just 

moving the mouse over one of these components will trigger the corresponding description to 

appear in the box (hence the name “interactive helpbox”). 

                

 

5.3.7 Status bar 
The TeraFly’s status bar displays the information (e.g. kind of operation, progress percentage, 

remaining time) related to the operation currently performed in background. Usually, TeraFly is 

so fast that the update of the status bar cannot even be noticed. Only when the operation involves 

a massive amount of input/output operations (such as when visualizing hundreds of time points 

at the time, see Section 5.3.4(ii)) the status bar updates can be noticed. 
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5.3.8 Vaa3D 3D viewport and visualization controls 
We provide here the most important user guidelines for the Vaa3D viewport/3D renderer and for 

the Vaa3D visualization controls that can be accessed from the TeraFly’s Tab Switch (Section 5.3.3). 

For more details, please visit the official Vaa3D website at http://vaa3d.org. 

 

(i) 3D interactive viewer: visualize and explore the image data in 3D smoothly using: 

 rotation: hold the mouse left button and move towards the desired rotation 

direction. 

 zoom: mouse scroll down (zoom-in), mouse scroll up (zoom-out) or double-click to 

the desired location (only in TeraFly). 

 shift: use the arrow keys (more precise) or press SHIFT + mouse left button to drag 

the image towards the desired direction. 

To access the useful Virtual Finger-powered 3D object annotation tools (Peng, et al., 2014), 

right-click on the image and choose the desired functionality from the pop-op menu. Some 

examples are: 

- “1-right-stroke to define a marker” to define a marker with one mouse right-stroke 

directly on the displayed object (e.g. a cell). 

- “1-right-stroke to define a 3D curve” to define a 3D curve with one mouse right-

stroke along a displayed linear structure (e.g. a neurite). 

-  “Zoom-in HighRezImage: 1-right-stroke ROI’ to zoom-in to the ROI defined with one 

mouse right-stroke.  

(ii) time scrollbar: scroll through the t axis and select the desired time point (5D data only). 
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(iii) rendering controls: change the image/surface objects rendering options. This includes “Vol 

Colormap”, a useful dialog to adjust the image LUT.  

(iv) volume cut scrollbars: specify the volume of interest to display. 

(v) rotation, zoom, and shift controls: these are alternative ways to control rotation, zoom and 

shift without using mouse drags and scrolls. 

 

5.3.9 3D object annotation toolbar 
The TeraFly’s 3D annotation toolbar consists of a set of tools designed to boost the visualization-

assisted analysis and proofreading of the displayed image and surface data (e.g. cells, neuron 

reconstructions). These tools are described in the following table. 

 

Open a .ano linker file. A .ano file contains a list (one or more) of annotation files 
supported by Vaa3D (i.e. .apo, .marker, .swc). 

 

Save 3D surface objects (i.e. cell markers, point clouds, tubules) to the already opened 
.ano file (it will be overwritten). 

 
Save annotations to a new .ano file. 

 
Deletes all 3D surface objects in the image (cannot be undone). 

 
Undo the last 3D object edit action. 

 
Redo the last 3D object edit action. 

 
Add one (or more) 3D marker(s) with one right-click. 

 

Add one (or more) 3D marker(s) with two right-clicks (the two clicks should be made 
from two different viewing angles). 

 

Remove one (or more) 3D marker(s) with one right-click. Only one marker at the time 
can be removed. 

 

Remove multiple 3D markers with one right-stroke. All the 3D markers within the 
contour drawn with the mouse will be removed.  

 

Show / hide the 3D markers around the displayed volume of interest (VOI). The outer 
margin size can be set from Options > Annotations > Markers -> Virtual margin size (see 
Section 5.3.1)  Default is 20% of the VOI. 

 
A shortcut to access to the Options menu (see Section 5.3.1). 
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5.4 Use cases 
In this section we provide a step-by-step guideline for common use cases which require little or no 

previous training or experience with our TeraFly software. When needed, we will refer to our test 

data repository (link) for the download of a specific dataset. 

 

5.4.1 Opening a TeraFly dataset  
(i) download and unzip one of the test datasets available from the our test data repository. 

(ii) launch Vaa3D and then launch TeraFly from the menu ‘Advanced’ > ‘Big-Image-Data’ > 

'TeraFly'. 

(iii) from the TeraFly menu bar (Section 5.3.1) or from the menu toolbar (Section 5.3.2) click on 

the ‘Open TeraFly volume’ button. From the file dialog, select any of the volume folders 

starting with “RES” (e.g. RES(255x255x255)). Each of these folders stores a different 

volume resolution (Supplementary Note 3, Section 3.2). Whatever folder is chosen, 

TeraFly will display the one corresponding to the lowest resolution image. 

 

5.4.2 Image exploration 
(i) open a dataset (Section 5.4.1). 

(ii) in the 3D viewer window (Section 5.3.8(i)), press and hold the left mouse button to rotate 

the 3D-rendered image freely.  

(iii) in the 3D viewer window, hold the ‘Shift’ key, and then press and hold the left mouse button 

to shift around the 3D-rendered image freely. 

(iv) in the 3D viewer window, use the mouse scroll wheel to zoom in or zoom out on the 3D-

rendered image freely. You may notice when TeraFly switches to the higher (or to the 

lower) resolution image just as Google Earth does. The higher the resolution, the smallest 

portion of the volume is displayed. 

(v) in the 3D viewer window, from the menu accessible by right-clicking on the image, select 

‘Zoom-in HighRezImage: 1-right-stroke ROI’ to zoom-in to the VOI defined with one right-

stroke. 

(vi) in the 3D viewer window, use the time scrollbar to move along the time points (5D data 

only)( Section 5.3.8 (ii)). 

(vii) in the TeraFly window, select the “Vaa3D controls” tab from the Tab switch (Section 5.3.3) 

and then click on the “Vol Colormap” to change brightness/contrast (Section 5.3.8 (iii)). 

From the same dialog, you can change other visualization options, such as rendering (MIP, 

mIP, alpha, X-Section) and 𝑧-thickness. 

(viii) in the TeraFly window, select the “TeraFly controls” from the Tab switch (Section 5.3.3) and 

then use the directional shifts (Section 5.3.4(x)) to allow the translation of the 3D viewer 

along the corresponding axes. 
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5.4.3 3D annotation of biological structures   
We describe in this section how to generate 3D markers and 3D curves for the displayed biological 

structures (e.g. cells, neurites, vessels) and how to curate (modify, annotate, delete, save/load) 

such data directly in the volumetric space of a 3D image stack (hence the term ‘3D annotation’). 

Applications of these annotation tools include (but are not limited to) cell counting, neurite tracing 

(e.g. in a whole brain image), vessel tracing, the generation a “gold standard” to feed semi- or fully-

supervised image analysis algorithms and the proofreading of the output of these algorithms. 

 

5.4.3.1 Generation and curation of 3D markers  
(i) download and unzip the mouse.cerebellum.1GB.zip dataset (courtesy of F.S. Pavone, L. 

Sacconi, L. Silvestri) from our test data repository and open it in TeraFly (Section 5.4.1). 

(ii) adjust brightness/contrast as needed (Section 5.4.2). 

(iii) zoom-in to the higher resolution scales until the cells can be clearly seen. 

(iv) from the TeraFly 3D object annotation toolbar displayed on the left (Section 5.3.9), activate 

the “1-right-click to define a marker”( ) tool to input 3D markers directly on the image 

with one mouse right-click. For a more precise cells pinpointing, activate the “2-right-click 

to define a marker”( ) tool to input 3D markers directly on the image with two mouse 

right-clicks (from two different viewing angles). 

(v) zooming-in or out to other resolution scales will also scale the size of the displayed markers, 

while maintaining their absolute position in the image space. To change the size of the 

displayed markers, go to ‘Options’ > ‘Annotations’ > ‘Markers’ > ‘Size’ (Section 5.3.1). 

(vi) to remove one marker at the time, activate the “1-right-click to delete a marker”( ) tool 

and right-click on the marker to be deleted. 

(vii) to remove multiple markers at the time, activate the “1-right-stroke to delete a group of 

markers”( ) tool and draw a curve with one mouse right-stroke around the markers to be 

deleted. Hold the ‘SHIFT’ key to delete only the markers along the curve. 

(viii) to undo/redo, click on the  and  buttons, respectively. 

(ix) to input text annotations for a specific marker, right-click on it to activate the pop-up menu 

for that marker and select the first menu entry “Marker #N…”. This will bring up a dialog 

where the annotation text can be inserted. 

(x) to change the color of a specific marker, right-click on it to activate the pop-up menu for 

that marker and select the “Color” entry. 

(xi) to save the markers and related annotations to a new .ano/.apo file, use the “Save annotation 

as”( ) tool and select the output filename from the file dialog. 

(xii) to save the markers and related annotations to the already imported .ano/.apo file, use the 

“Save annotations”( ) tool (it will overwrite the .apo file). 
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(xiii) to load the markers and related annotation from an existing .ano/.apo file, use the “Load 

annotations”( ) tool and select the input file from the file dialog. For instance, you might 

want to open the somas-subvol.ano (already present in the test dataset) which contains the 

automated cell counts for the entire volume. 

(xiv) to delete all the markers in the image, use the “Clear annotations” ( ) tool. 

 

5.4.3.2 Generation and curation of 3D curves  
(i) download and unzip the rat.neuron.zip dataset (courtesy of R. Tisen) from our test data 

repository and open it in TeraFly (Section 5.4.1). 

(ii) adjust brightness/contrast as needed (Section 5.4.2(vii)). 

(iii) from the coarsest resolution scale image (i.e. the one displayed when the image volume is 

opened), right-click on the image to activate the pop-up menu and select ‘1-right-stroke to 

define a 3D curve (ver 2a)’ to trace linear structures (e.g. neurites) directly on the image with 

one right-stroke. At this coarse resolution, only the thicker neurites can be traced.  

(iv) creating a 3D curve will also enable the curve editing mode, which activates additional 

options from the right-click pop-up menu. To exit from the curve editing mode, select the 

“finish editing this neuron” option from the right-click pop-up menu. To re-enter the curve 

editing mode, right-click on the curve tree to be edited and select the “edit this neuron” 

option. 

(v) to input text annotations for a specific curve segment, right-click on it to activate the pop-

up menu for that segment and select the first menu entry “Neuron/line #N…”. This will bring 

up a dialog where the annotation text can be inserted. 

(vi) to change the color of a specific curve segment, right-click on it to activate the pop-up menu 

for that segment and select the “Color” entry. 

(vii) to change the aspect (tube/skeleton) of the displayed curves, go to ‘Options’ > ‘Annotations’ 

> ‘Curves’ > ‘Aspect’ (Section 5.3.1).  

(viii) to change the thickness (radius) of a specific curve segment (curve editing mode on), right-

click on it to activate the corresponding pop-up menu and select the “change nearest neuro-

segment radius” option. 

(ix) to smooth a specific curve segment (curve editing mode on), right-click on it to activate the 

corresponding pop-up menu and select the “deform the neuron-segment” option. This will 

open a file dialog from which the value “resolution step” should be increased. 

(x) to delete one or more neuron segments (curve editing mode on), right-click on the image 

and select the “delete multiple neuron-segments by stroke” option from the pop-up menu. 

Then hold the ‘SHIFT’ key and draw a contour with one mouse right-stroke around the 

curve segments to be deleted. Release the ‘SHIFT’ key to delete only the curve segments 

intersecting the contour drawn. 
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(xi) to undo/redo, click on the  and  buttons, respectively. 

(xii) use the TeraFly zoom-in and zoom-out functions combined with the annotation tools 

previously described to trace neurites of different thickness at different resolution scales. 

For instance, thin neurites can only be clearly seen (and thus traced) at the highest 

resolution scale, whereas thick neurites can only be traced at the coarsest resolution scale 

(they are too thick at the highest resolution scale), and so on. 

(xiii) to save the curve segments and related annotations to a new .ano/.swc file, use the “Save 

annotation as”( ) tool and select the output filename from the file dialog. 

(xiv) to save the curve segments and related annotations to the already imported .ano/.swc file, 

use the “Save annotations”( ) tool (it will overwrite the .swc file). 

(xv) to load the curve segments and related annotation from an existing .ano/.swc file, use the 

“Load annotations”( ) tool and select the input file from the file dialog. For instance, you 

might want to open the neuron-traced.ano (already present in the test dataset) which 

contains the manual tracing for the entire volume. 

(xvi) to delete all the curve segments in the image, use the “Clear annotations” ( ) tool. 

 

5.4.3.3 Fast proofreading of automatic analysis outputs in large image volumes  
(i) download and unzip the mouse.cerebellum.1GB.zip dataset (courtesy of F.S. Pavone, L. 

Sacconi, L. Silvestri) from our test data repository and open it in TeraFly (Section 5.4.1). 

(ii) adjust brightness/contrast as needed; 

(iii) set the 3D viewer x-y-z dimensions (Section 5.3.4(ii)) to 300(x) x 300(y) x 300 (z). This will 

correspond to the dimensions of a single image block during the block-by-block 

proofreading of the entire volume. 

(iv) from the TeraFly 3D object annotation toolbar displayed on the left (Section 5.3.9), use the 

“Load annotations”( ) tool and select the somas-subvol.ano file that comes along with the 

dataset. This will import the automatic cell counts and display the detected cells as 3D 

markers. 

(v) from TeraFly, click on the ‘Start’ button in the ‘Proofreading’ panel (Section 5.3.5). A dialog 

will be shown (Section 5.3.5(iv)) from which to set proofreading session parameters (we 

suggest block overlap of 20%, and the highest resolution scale). Then, press the ‘Start‘ 

button to enter the proofreading mode.  

(vi) once the first block is loaded and displayed, use the QuickScan (Section 5.3.5(ii)) feature to 

jump to the next nonempty block by scrolling the mouse wheel up and down on the block's 

spinbox in the ‘Proofreading’ panel and then click and press Enter to load the block. 

(vii) to quickly proofread the cell locations in the current block, use the tools in the TeraFly’s 3D 

annotation toolbar as described in Section 5.4.3.1. 
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(viii) to visualize the markers outside the displayed VOI and thus to avoid errors (i.e. false 

positives and false negatives) in the VOI’s boundary regions, use the “Show/hide markers 

around the displayed VOI” tool ( ). The markers outside the VOI will be displayed in white 

color and cannot be modified nor deleted from this VOI (indeed they rely to the adjacent 

VOIs). Alternatively, one can choose a higher block overlap (e.g. 40%) at step (v), but at the 

cost of an increased number of blocks to proofread. 

(ix) use the “Save annotations”( ) button in the TeraFly’s toolbar to save the corrected cells. 

(x) to exit the proofreading mode, click on the ‘Stop’ button in the ‘Proofreading’ panel. 

 

5.4.4 Automated analysis of the annotation results   
We describe in this section the tools available in TeraFly to quantitatively analyze the manually 

inputted or automatically generated 3D object annotations. Applications of these tools include (but 

are not limited to) the quantitative comparison of “gold standard” annotations to computer (or 

human) generated annotations or, further, the quantitative comparison of annotations 

curated/proofread with different tools (Supplementary Note 6). Of note, comparing multiple 

(𝑛 >  2) instances of image annotations, such as cell counts generated by multiple experts or 

algorithms, would be computationally cumbersome without a look-up table designed for efficient 

representation and search of such annotation data. In TeraFly, we use an octree data structure to 

encode the 3D object coordinates that allows real-time search of the annotation data 

(Supplementary Note 7). 

5.4.4.1 Counting and/or labeling quasi-coincident 3D markers  
Given a set 𝐴 of |𝐴| markers 𝑚𝑖, 𝑖 = 1, … , |𝐴|, with each marker 𝑚𝑖 associated to a 3D point 

(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), and a tolerance distance 𝑑𝑚𝑎𝑥, we define two markers 𝑚𝑖 and 𝑚𝑗  as quasi-coincident 

(𝑚𝑖 ≅𝑑𝑚𝑎𝑥
𝑚𝑗) if (and only if) their distance is less or equal to 𝑑𝑚𝑎𝑥, i.e.: 

𝑚𝑖 ≅𝑑𝑚𝑎𝑥
𝑚𝑗    iff  𝑑(𝑚𝑖 , 𝑚𝑗) ≤ 𝑑𝑚𝑎𝑥 

To simplify the notation, we will omit the subscript 𝑑𝑚𝑎𝑥 from the notation ‘≅𝑑𝑚𝑎𝑥
’, and thus 

indicate two quasi-coincident markers 𝑚𝑖 and 𝑚𝑗  with 𝑚𝑖 ≅ 𝑚𝑗 .  

In TeraFly, there are two options to calculate quasi-coincident 3D markers in a .apo file: 

(i) from the TeraFly menu (Section 5.3.1), go to ‘Utilities’ > ‘Annotations’ > 'Markers' > 'Count 

duplicates in the whole image' and insert the tolerance distance 𝑑𝑚𝑎𝑥. TeraFly will count the 

quasi-coincident markers in the whole image currently opened. 

(ii) from the TeraFly menu, go to ‘Utilities’ > ‘Annotations’ > 'Markers' > 'Label duplicates in .apo 

file' and choose the input .apo file, the output .apo file, and the tolerance distance 𝑑𝑚𝑎𝑥. 

TeraFly will label the quasi coincident markers with white color and save them (along with 

the other markers) to the selected output file. 
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5.4.4.2 Compare/diff multiple annotation files 
Given the sets of markers 𝑀1, … , 𝑀𝑛 corresponding to 𝑛 distinct annotation files (.apo) generated 

by 𝑛 distinct annotators (either humans or computer algorithms), we want to obtain the subset  𝐷 

that contains only the markers where at least two annotators disagree. Thus, we want to calculate: 

𝐷 = ⋃ 𝐷𝑖

𝑖

     𝑤ℎ𝑒𝑟𝑒   𝐷𝑖 = {𝑚 ∈ 𝑀𝑖  : ∃𝑗 ≠ 𝑗 : 𝑥 ∉ 𝑀𝑗} 

The procedure to do this in TeraFly is described as follows:  

(i) from the TeraFly menu (Section 5.3.1), go to ‘Utilities’ > ‘Annotations’ > 'Markers' > 'Diff of 

multiple .apo files' and select any number of input .apo files and the output .apo file. 

(ii) TeraFly will calculate 𝐷 = ⋃ 𝐷𝑖𝑖  and associate a unique color and name to the markers of 

𝐷𝑖 . This way, it will still be possible to distinguish the various 𝐷𝑖  in 𝐷. The unique name is 

extracted from the input .apo filename.  

 

5.4.4.3 Calculate type I and type II errors from two annotation files  
Given the sets of markers 𝐺 and 𝐹 corresponding to two distinct annotation files (.apo), where 𝐺 is 

assumed as gold standard, we want to compare 𝐺 and 𝐹 and calculate the type I errors (false 

positives (𝐹𝑃)) and type II errors (false negatives (𝐹𝑁)) in 𝐹. Following the definition of quasi 

coincident markers of Section 5.4.4.1, we want to calculate: 

𝐹𝑃 = {𝑥 ∈ 𝐹 : 𝑥 ≇ 𝑦,  ∀𝑦 ∈ 𝐺} 

𝐹𝑁 = {𝑦 ∈ 𝐺 : 𝑦 ≇ 𝑥,  ∀𝑥 ∈ 𝐹} 

The procedure to do this in TeraFly is described as follows:  

(i) from the TeraFly menu (Section 5.3.1), go to ‘Utilities’ > ‘Annotations’ > 'Markers' > 'Count 

type I/II errors from two .apo files' and select the input .apo files corresponding to 𝐺 and 𝐹 

and the output .apo file. 

(ii) TeraFly will ask to input the tolerance distance 𝑑𝑚𝑎𝑥 (Section 5.4.4.1) and, optionally, the 

unique name identifier of the markers in 𝐹 that have to be compared with the markers in 𝐺. 

If no name filter is provided, all the markers in 𝐹 will be compared to all the markers in 𝐺. 

(iii) TeraFly will store in the output .apo file the two sets 𝐹𝑃 and 𝐹𝑁 with the false positive 

markers labeled with red color and annotated as ‘false_positive’ and the false negative 

markers labeled with blue color and annotated as ‘false_negative’. 
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Supplementary Note 6. Annotation of Big-Image-Data  

6.1 Introduction 
TeraFly enabled us to annotate massive amount of biological images as we demonstrate in this 

supplement in two real case scenarios (Section 6.2 and Section 6.3). Further, in Section 6.4 we 

provide benchmark results and a quantitative comparison with other tools demonstrating that 

TeraFly is both more efficient and more precise in the annotation of biological structures. 

 

6.2 Quantification of Purkinje cells in a 110 GB mouse cerebellum 
The first real test case was the precise quantification of Purkinje cells in a L7-GFP whole mouse 

cerebellum. We ran the Brain cell finder tool (Frasconi, et al., 2014) to localize the Purkinje cells in 

the 110.1 gigabyte image of the cerebellum of an L7-GFP mouse (Table 2.1). A total of 224,221 

locations were detected and saved into a standard ASCII .vtk file to be imported into TeraFly 

(Section 5.3.1). Then, an expert accurately proofread the cell locations in one quarter (26 

gigabytes) of the image (Supplementary Video 3) using the TeraFly’s proofreading modality 

(Section 5.3.5 and Section 5.4.3.3). This activity was divided into 16 sessions in which the expert 

analyzed 1,274 image stacks of size 300(𝑥) × 300(𝑦) × 300(𝑧) with overlap of 20%. Remarkably, 

the total time employed was only 10.1 hours, corresponding to about 24 minutes per gigabyte. 

Assuming the obtained cell count as a gold standard, we then evaluated the performance of the 

computerized analysis as follows. A predicted cell center 𝑐 was considered to be a true positive 

(𝑇𝑃) if it matched a gold standard center �⃗� such that ||𝑐 − �⃗�||  =  0. Unmatched predictions were 

counted as false positives (𝐹𝑃) and unmatched gold standard centers were counted as false 

negatives (𝐹𝑁). To this end, we used the type I/II error counting functionality available in TeraFly 

(Section 5.4.4.3). We finally computed precision (𝑃), recall (𝑅), and 𝐹1 measure as 𝑃 = 𝑇𝑃/(𝑇𝑃 +

𝐹𝑃), 𝑅 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), and 𝐹1 =
2𝑃𝑅

𝑃+𝑅
 . The performance achieved was 𝐹1 = 0.98, which applied 

to the entire image yields an estimate of 220, 800 Purkinje cells in the whole mouse cerebellum. 

This result is consistent with previous estimates based on stereology (Woodruff-Pak, 2006; 

Biamonte, et al., 2009) and is the most complete and precise map of its kind ever obtained. 

 

6.3 Tracing of mammalian neurons  
Currently TeraFly has been deployed in several applications to reconstruct (trace) very 

complicated, large, 3D mammalian neuron morphology from images acquired using different 

imaging modalities. While a comprehensive application study is beyond the scope of this technical 

paper, here we describe an example to use TeraFly to annotate rat neuron image acquired using 2-

photon microscopy (courtesy of R. Tisen). The image had size 6,952(𝑥)×9,640(𝑦)×179(𝑧) voxels 

and two color channels. The produced pyramid image consisted of four additional downsampled 

images of size from 3,476(𝑥)×4,820(𝑦)×80(𝑧) to 434(𝑥)×602(𝑦)×11(𝑧). Starting from the lowest-

resolution image, an expert accurately traced the thickest neurites. Thinner neurites were traced 

at the intermediate resolutions, whereas the thinnest ones, which were only partially or not visible 

at the lowest resolutions, could only be traced at the highest resolutions (Supplementary Video 
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6). With TeraFly visualization and multi-scale one mouse-stroke 3D curve creation (Section 

5.4.3.2), the entire neuron could be mapped efficiently. 

 

6.4 Benchmarks 
From the same whole cerebellum image used in the experiment of Section 6.2, we extracted a 1 GB 
nonempty nonproofread image of size 1020(𝑥) × 1020(𝑦) × 1020(𝑧) voxels and compared 

TeraFly’s 3D-based proofreading (Section 5.3.5 and Section 5.4.3.3) with analogous annotation 

functionalities offered by other image visualization softwares. Specifically, we compared TeraFly 

to CellCounter/ImageJ (De Vos, 2010; Abrmoff, et al., 2004) and to MaMuT/BigDataViewer 

(Tinevez & Pietzsch, 2015; Pietzsch, et al., 2015), which are two popular and freely available tools 

for image visualization and annotation. 

To obtain a rough estimate of the proofreading errors (type I and type II) made with the tools 

considered, we designed a procedure that requires minimal human effort (at least two 

proofreaders) and no prior definition of a gold standard annotation (Fig. 6.1). The procedure 

consists of comparing the proofread cells generated with the different annotation tools and then 

checking (and correcting) one by one the cells where at least two tools disagree. This potentially 

yields an underestimation of the proofreading errors when all the tools make the same errors, but 

still can be a valuable method to compare the proofreading performance of the different tools. In 

our experiment, we employed three proofreaders: the first two who generated the proofread cells 

with the tools under comparison, and the third one who carefully checked the cells where at least 

two tools disagreed and marked the type I and type II errors. To implement this procedure, we 

used the annotation analysis tools available in TeraFly (Section 5.4.4). 

 

Fig. 6.1. The proposed procedure used to estimate the number of proofreading errors (false positives and false 

negatives) made with 𝑁 proofreading tools and that uses 𝑀 + 1 proofreaders (𝑁 = 3 and 𝑀 = 2 in our experiment). 

To generate the proofread cells for the various tools considered, we proceeded as follows. The 1 

GB image was virtually divided into 64 blocks of size 300(𝑥) × 300(𝑦) × 300(𝑧) (overlap 60 

voxels), that were proofread separately. Such subdivision was a good trade-off between the 

number of blocks to proofread (the fewer, the faster the proofreading) and the number of cells in 
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a single block (the higher, the more difficult and error prone is the proofreading). Then, for each of 

the tools considered, the first proofreader accurately proofread the 64 blocks after having being 

trained on additional 5 blocks. In CellCounter/ImageJ, which does not support big-image-data 

visualization, the 64 image blocks were loaded and visualized one at the time after having been 

previously extracted from the 1 GB image and saved to 64 image stacks. In TeraFly and 

MaMuT/BigDataViewer, the entire 1 GB image could be loaded and visualized quickly, thanks to 

their efficient big-image-data visualization. In TeraFly, we used the proofreading modality with the 

same settings of the experiment of Section 6.2. In MaMuT/BigDataViewer, we iteratively moved 

the viewer along 𝑥, 𝑦 and 𝑧 on the block to proofread.   

The results of the proofreading time and type I/II error estimates are reported in Fig. 6.2. On 

average, proofreading with TeraFly was 4x faster than with Cell Counter/ImageJ and 3x faster than 

MaMuT/BigDataViewer (Fig. 6.1a). Moreover, TeraFly achieved an average precision �̅� = 0.996 

whereas CellCounter/ImageJ and MaMuT/BigDataViewer achieved  �̅� = 0.983 and �̅� = 0.989, 

respectively. These results demonstrate that TeraFly was both considerably faster and more 

precise than the other tools considered. In particular, TeraFly outperformed the other tools 

especially on false positives, which were more difficult to detect using a 2D slice-by-slice 

annotation approach (Supplementary Video 3-5).  

Finally, we extracted another 64 mostly black image stacks that did not contain any cell. In our 

case, these formed up to 50% of the whole mouse cerebellum image and thus they could slow down 

proofreading significantly. This was the case of Cell Counter/ImageJ and MaMuT/BigDataViewer 

but not of TeraFly (Fig. 6a), as we developed a fast previewing technique that boosted proofreading 

in case of partially or totally empty stacks (Section 5.3.5).  

 (a)  (b) 

Fig. 6.2. (a) Average time (mean ± s.d.) for proofreading of automated Purkinje cell counts in 64 nonempty 3D image 
stacks, 64 empty image 3D stacks, and 128 mixed (64 nonempty and 64 empty) 3D image stacks extracted from the 
L7-GFP 110 gigabyte whole mouse cerebellum image. (b) Proofreading errors (type I/false positives and type II/false 
negatives) made on the 64 nonempty image stacks of (a). 
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Supplementary Note 7. 3D object representation 

To facilitate very efficient 3D annotation of biological structures (Section 5.4.3), and the automated 

analysis of such 3D annotations (Section 5.4.4), in TeraFly we used the octree data structure 

(Meagher, 1982) to encode the 3D objects at runtime. Specifically, we employ a hierarchical 8-ary 

tree structure in which each node subdivides the space it represents into 8 equally-sized 

nonoverlapping octants. The root of the octree corresponds to the whole image at the highest 

resolution (Fig. 7.1(i)), and each 1 × 1 × 1 voxel-sized node stores the point belonging to one or 

more 3D objects (Fig. 7.1(ii)). Let 𝑃 be the set of 3D points needed to represent all the 3D objects, 

this structure has two advantages over a simpler, unordered array of points: (i) the memory 

required for its representation is still on the order of |𝑃|, like for an array; and (ii) the time 

complexity for finding the objects in a Volume of Interest (VOI) is 𝑂(log |𝑃|) (Meagher, 1982; 

Narasimhan, et al., 2006), whereas for an array it is 𝑂(|𝑃|). Specifically, the VOI query time for 3D 

objects was always negligible with the octree, and two orders of magnitude smaller than with the 

array (Fig. 7.2).  

 

  

Fig. 7.1. Octree-based representation of the annotated 3D objects. (i) First steps of the generation of an octree. (ii) A 

neurite traced in a whole mouse brain image and the corresponding octree viewed from two different angles. 
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Fig. 7.2. Average query time (mean ± s.d.) for 3D objects in a VOI using octree and array data structures to store 3D 
objects coordinates. Each data point was obtained from 100 VOIs of size 256(𝑥) × 256(𝑦) × 256(𝑧) randomly taken 
from a 1 terabyte image with an increasing number of uniformly distributed 3D markers.    

  

Nature Methods doi:10.1038/nbt.3767



 

References 
Abrmoff, M., Magalhes, P. & Ram, S., 2004. Image Processing with ImageJ. Biophotonics International, 11(7), p. 

36–42. 

Adobe Developers Association, 1992. TIFF revision 6.0 specification. [Online]  

Available at: https://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf 

Amat, F. et al., 2015. Efficient processing and analysis of large-scale light-sheet microscopy data. Nature 

Protocols, 10(11), pp. 1679-1696. 

Biamonte, F. et al., 2009. Interactions between neuroactive steroids and reelin haploinsufficiency in Purkinje 

cell survival. Neurobiology of Disease, 36(1), p. 103–115. 

Carpenter, A. et al., 2006. Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. 

Genome Biology, 7(10), p. R100. 

Chung, K. & Deisseroth, K., 2013. CLARITY for mapping the nervous system. Nature Methods, 10(6), p. 508–513. 

Conrad, C. et al., 2011. Micropilot: automation of fluorescence microscopy-based imaging for systems biology. 

Nature Methods, 8(3), pp. 246-249. 

De Vos, K., 2010. Cell Counter. [Online]  

Available at: http://rsbweb.nih.gov/ij/plugins/cell-counter.html 

Frasconi, P. et al., 2014. Large-scale automated identification of mouse brain cells in confocal light sheet 

microscopy images. Bioinformatics, 30(17), p. i587–i593. 

Fukunaga, K. & Hostetler, L. D., 1975. The estimation of the gradient of a density function, with applications in 

pattern recognition.. Information Theory, IEEE Transactions on, 21(1), pp. 32-40. 

Jeong, W. K. et al., 2010. SSECRETT and neurotrace: Interactive visualization and analysis tools for large-scale 

neuroscience data sets. IEEE Comput. Graph. Appl., 30(3), pp. 58-70. 

Lau, C. et al., 2008. Exploration and visualization of gene expression with neuroanatomy in the adult mouse 

brain. BMC Bioinformatics, 9(1), 153. BMC Bioinformatics, 9(1), p. 153. 

Long, F. et al., 2009. A 3D digital atlas of C. elegans and its application to single-cell analyses. Nature Methods, 

6(9), pp. 667-672. 

Long, F., Zhou, J. & Peng, H., 2012. Visualization and analysis of 3D microscopic images. PLoS Computational 

Biology, 8(6), p. e1002519. 

Meagher, D., 1982. Geometric modeling using octree encoding. Computer Graphics and Image Processing, 

19(2), p. 129–147. 

Murphy, R. F., 2012. Cellorganizer: Image-derived models of subcellular organization and protein distribution. 

In: Computational Methods in Cell Biology. s.l.:A.R. Asthagiri and A. P. Arkin, pp. 179-193. 

Narasimhan, S., Mundani, R.-P. & Bungartz, H.-J., 2006. An octree and a graph-based approach to support 

location aware navigation services. s.l., s.n., p. 24–30. 

Peng, H., 2008. Bioimage informatics: a new area of engineering biology. Bioinformatics, 24(17), pp. 1827-1836. 

Nature Methods doi:10.1038/nbt.3767



 

Peng, H. et al., 2010. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological 

image data sets. Nat Biotech,, 8(4), p. 246–249.. 

Peng, H. et al., 2014. Virtual Finger boosts three-dimensional imaging and microsurgery as well as terabyte 

volume image visualization and analysis. Nature Communications, Volume 5. 

Pietzsch, T. et al., 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), p. 

676–682. 

Pietzsch, T., Preibisch, S., Tomancak, P. & Saalfeld, S., 2012. ImgLib2 - generic image processing in Java. 

Bioinformatics, 28(22), p. 3009–3011. 

Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P., 2015. BigDataViewer: visualization and processing for 

large image data. Nature Methods, 12(6), pp. 481-483. 

Pologruto, T., Sabatini, B. & Svoboda, K., 2003. Scanimage: Flexible software for operating laser scanning 

microscopes. BioMedical Engineering OnLine, 2(1), p. 13. 

Royer, L. A. et al., 2015. ClearVolume: open-source live 3D visualization for light-sheet microscopy. Nature 

Methods, 12(6), pp. 480-481. 

Saalfeld, S., Cardona, A., Hartenstein, V. & Tomancak, P., 2009. CATMAID: collaborative annotation toolkit for 

massive amounts of image data. Bioinformatics, 25(1984–1986). 

Silvestri, L., Bria, A., Sacconi, L. & Iannello, G., 2012. Confocal light sheet microscopy: micron-scale 

neuroanatomy of the entire mouse brain. Optic Express, 20(18), p. 20582–20598. 

Sommer, C., Straehle, C., Kothe, U. & Hamprecht, F., 2011. Ilastik: Interactive learning and segmentation 

toolkit. s.l., s.n., pp. 230-233. 

Stuurman, N. et al., 2010. Computer Control of Microscopes using μManager. In: Current protocols in molecular 

biology. s.l.:John Wiley & Sons, Inc., Hoboken, NJ, USA. 

The HDF Group, 2014. Hierarchical Data Format, version 5. [Online]  

Available at: http://www.hdfgroup.org/HDF5 

Tinevez, J.-Y. & Pietzsch, T., 2015. MaMuT: A Fiji plugin for the annotation of massive, multi-view data. [Online]  

Available at: http://fiji.sc/MaMuT 

Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K., 2014. Advanced clarity for rapid and high-resolution imaging of 

intact tissues. Nature Protocols, 7(9), p. 1682–1697. 

Walter, T. et al., 2010. Visualization of image data from cells to organisms. Nature Methods, 7(3), pp. S26-S41. 

Woodruff-Pak, D., 2006. Stereological estimation of Purkinje neuron number in C57BL/6 mice and its relation to 

associative learning. Neuroscience, 141(1), p. 233–243. 

 

 

Nature Methods doi:10.1038/nbt.3767


	nmeth.3767.pdf
	nmeth.3767-S1



