
192 | VOL.13 NO.3 | MARCH 2016 | NATURE METHODS

CORRESPONDENCE

networks, coexpression to rescue RNA interference– or CRISPR-
CAS9–induced reduction of endogenous transcripts, and expression
of ORFs carrying a mutation of interest to allow measurement of the
mutation effect in the absence of the wild-type background.

High-level gene coverage, combined with the versatility of
Gateway cloning, and full access to OC clones make this collection
a unique and valuable resource for the scientific community that
should aid in the functional characterization of new protein targets
and testing of disease-relevant mutations on a large scale. The OC
resource will continue to be expanded in the future to increase
human gene coverage, provide additional isoforms where avail-
able, provide clones with medically relevant mutations and add
additional species, including ORFs from Xenopus and Drosophila.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (http://dx.doi.org/10.1038/nmeth.3776).

ACKNOWLEDGMENTS
The authors acknowledge valuable encouragement for initiating the OC from
F. Collins (US National Institutes of Health) and E. Harlow (Harvard Medical
School). Some of the cDNAs used as PCR templates for ORF cloning and other
support were received from the German cDNA Consortium: K. Köhrer (University
Düsseldorf, Germany), W. Ansorge (EMBL Heidelberg, Germany), H. Blöcker
(Helmholtz Center Braunschweig, Germany), W. Mewes, C. Amid (Helmholtz
Center Munich, Germany), J. Lauber, A. Bahr (Qiagen, Hilden, Germany),
D. Heubner, R. Wambutt (Agowa, Berlin, Germany), B. Ottenwälder, B. Obermaier
(Medigenomix, Ebersberg, Germany), H. Blum, H. Domdey (University Munich,
Germany), I. Schupp, S. Bechtel and A. Poustka (DKFZ, Heidelberg, Germany).
The German cDNA Consortium was funded by the Federal Ministry of Education
and Research (BMBF) in the frame of the German Genome Project (DHGP) and
the German National Genome Research Network (NGFN) programs (to S.W.). This
work was supported by the Ellison Foundation (grant to M.V. and D.E.H.); the DFCI
Institute (Sponsored Research funds to M.V. and D.E.H.); the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan (research grants to Y.H. at
the RIKEN Omics Science Center and to P.C. at the RIKEN Center for Life Science
Technologies); and the MEXT Genome Network Project (grant to Y.H.).

AUTHOR CONTRIBUTIONS
M.V., D.S.G., J.L., G.T. and D.E.H. founded the OC and conceived of the project.
S.W., Y. Hu, G.B., P.C., I.D., Y. Hayashizaki, J.K., O.O., A.R., K.S.-A., J.S., R.W.,
M.V. and D.E.H. generated and contributed entry clones. S.W., Y. Hu, G.B., P.C.,
I.D., Y. Hayashizaki, S.H., B.K., J.K., C.K., S.L., A.R., K.S.-A., J.S., R.W., S.Y.,
M.V., J.L. and D.E.H. generated sequence-verified ORF clones. S.W., Y. Hu, G.B.,
I.D., T.H., O.H., S.H., A.H.-W., W.J., A.J., C.K., A.L., S.L., J.P., B.S., L.W. and S.Y.
performed bioinformatics analysis and clone annotation. C.P., A.A., C.K., A.L.,
S.L., A.v.B.S. and S.Y. re-arrayed libraries and carried out quality control of ORF
clones. C.P., P.H., M.H., A.A., M.B., J.W.H., B.K., C.L., S.L., J.M., T.M., O.O., J.P.,
A.R., C.S., B.S., A.v.B.S., T.W. and S.Y. performed archiving and distribution of the
ORF clone resource to the public. S.W., C.P., P.H., M.H., M.D., O.H., S.L., J.P., C.S.
and S.Y. carried out website and database development. S.W., M.H., M.V., D.S.G.,
J.L., G.T. and D.E.H. led, oversaw and steered development of the consortium and
wrote the paper.

COMPETING FINANCIAL INTERESTS
The authors declare competing financial interests: details are available in the
online version of the paper (http://dx.doi.org/10.1038/nmeth.3776).

The ORFeome Collaboration: Stefan Wiemann1,2,
Christa Pennacchio3, Yanhui Hu4, Preston Hunter5,
Matthias Harbers6,7, Alexandra Amiet8, Graeme Bethel9,
Melanie Busse10, Piero Carninci7, Mark Diekhans11,
Ian Dunham9, Tong Hao12–14, J Wade Harper15,
Yoshihide Hayashizaki16, Oliver Heil2, Steffen Hennig17,
Agnes Hotz-Wagenblatt2, Wonhee Jang18, Anika Jöcker1,
Jun Kawai16, Christoph Koenig17, Bernhard Korn19,
Cristen Lambert20, Anita LeBeau21, Sun Lu22,23,
Johannes Maurer17, Troy Moore24, Osamu Ohara25, Jin Park5,
Andreas Rolfs26, Kourosh Salehi-Ashtiani12–14, Catherine Seiler5,

Blake Simmons21,24, Anja van Brabant Smith8, Jason Steel5,
Lukas Wagner18, Tom Weaver10, Ruth Wellenreuther1,
Shuwei Yang22, Marc Vidal12–14, Daniela S Gerhard27,
Joshua LaBaer5,28, Gary Temple20 & David E Hill12–14

1Division of Molecular Genome Analysis, German Cancer Research Center
(DKFZ), Heidelberg, Germany. 2Genomics & Proteomics Core Facility, German
Cancer Research Center (DKFZ), Heidelberg, Germany. 3IMAGE Consortium,
Lawrence Livermore National Laboratories, Livermore, California, USA.
4Department of Genetics, Harvard Medical School, Boston, Massachusetts,
USA. 5Virginia G. Piper Center for Personalized Diagnostics (VGPCPD),
Biodesign Institute, Arizona State University, Tempe, Arizona, USA. 6DNAFORM
Inc., Tsurumi-ku, Yokohama City, Kanagawa, Japan. 7Division of Genomic
Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama
Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan. 8Dharmacon, GE Healthcare,
Lafayette, Colorado, USA. 9Wellcome Trust Sanger Institute, Wellcome Trust
Genome Campus, Cambridge, UK. 10Source BioScience, Nottingham, UK. 11UC
Santa Cruz Genomics Institute, University of California, Santa Cruz, California,
USA. 12Center for Cancer Systems Biology (CCSB), Dana‐Farber Cancer Institute,
Boston, Massachusetts, USA. 13Department of Cancer Biology, Dana‐Farber
Cancer Institute, Boston, Massachusetts, USA. 14Department of Genetics, Harvard
Medical School, Boston, Massachusetts, USA. 15Dana-Farber–Harvard Cancer
Center (DFHCC) DNA Resource Core and Department of Cell Biology, Harvard
Medical School, Boston, Massachusetts, USA. 16RIKEN Preventive Medicine
& Diagnosis Innovation Program, RIKEN Yokohama Institute, Wako, Saitama,
Japan. 17imaGenes GmbH, Berlin, Germany. 18National Center for Biotechnology
Information, National Library of Medicine, National Institutes of Health, Bethesda,
Maryland, USA. 19Ressourcenzentrum für Genomforschung gGmbH, Berlin,
Germany. 20National Human Genome Research Institute, National Institutes of
Health, Bethesda, Maryland, USA. 21HudsonAlpha Institute of Biotechnology,
Huntsville, Alabama, USA. 22GeneCopoeia, Inc., Rockville, Maryland, USA.
23Guangzhou FulenGen, Ltd., Guangdong, China. 24Open Biosystems, Inc.,
Huntsville, Alabama, USA. 25Kasusa DNA Research Institute, Kisarazu, Chiba,
Japan. 26Department of Biological Chemistry & Molecular Pharmacology, Harvard
Institute of Proteomics, Harvard Medical School, Boston, Massachusetts, USA.
27Office of Cancer Genomics, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland, USA. 28Department of Chemistry and Biochemistry,
Arizona State University, Tempe, Arizona, USA. Correspondence should be
addressed to D.E.H. (david_hill@dfci.harvard.edu), S.W. (s.wiemann@dkfz.de),
G.T. (gftemple@gmail.com), M.H. (matthias.harbers@riken.jp), M.V. (marc_
vidal@dfci.harvard.edu) or J.L. (joshua.labaer@asu.edu).

1. Walhout, A.J. et al. Methods Enzymol. 328, 575–592 (2000).
2. MGC Project Team et al. Genome Res. 19, 2324–2333 (2009).
3. Wiemann, S. et al. Genome Res. 11, 422–435 (2001).
4. Yang, X. et al. Nat. Methods 8, 659–661 (2011).
5. Rolland, T. et al. Cell 159, 1212–1226 (2014).
6. Yu, X. & LaBaer, J. Nat. Protoc. 10, 756–767 (2015).

TeraFly: real-time three-dimensional
visualization and annotation of terabytes
of multidimensional volumetric images

To the Editor: New sample preparation and high-throughput light-
sheet microscopy techniques1 are increasingly capable of generating
multidimensional (3D and higher) images easily exceeding the tera-
byte size. This has posed a significant challenge for scalable inter-
active visualization and quantitative annotation of such big image
data. A common practice is to design a data-streaming and visualiza-
tion tool to supply and display small parts of an image volume when
needed2,3. However, existing tools allow only 2D slice-based render-
ing of 3D image stacks. Such 2D approaches not only are time con-
suming and low throughput but also bring bias to the understand-
ing of intrinsic 3D properties of bioimage data4. A free, open-source
and cross-platform software tool for true 3D visualization and 3D
annotation of very large multidimensional volumes is highly desired
(Supplementary Note 1).

np
g

©
 2

01
6

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://dx.doi.org/10.1038/nmeth.3776
http://dx.doi.org/10.1038/nmeth.3776
mailto:david_hill@dfci.harvard.edu
mailto:s.wiemann@dkfz.de
mailto:gftemple@gmail.com
mailto:matthias.harbers@riken.jp
mailto:marc_vidal@dfci.harvard.edu
mailto:marc_vidal@dfci.harvard.edu
mailto:joshua.labaer@asu.edu

NATURE METHODS | VOL.13 NO.3 | MARCH 2016 | 193

CORRESPONDENCE

To fill this gap, we have developed TeraFly software for interactive
3D visualization of terabytes of 3D and 4D (3D spatial information
plus color) images, as well as 5D (4D plus time) image series, with
subsecond response times from both local and remote data sources
(Supplementary Note 2). TeraFly instantly translates simple com-
puter-mouse actions (e.g., drags and scrolls) performed directly in
the volumetric space of a 3D viewer into translation, rotation and
zoom for the 3D volumes of interest (VOIs) displayed at the appro-
priate image resolution (Supplementary Videos 1 and 2). TeraFly
uses only 336 megabytes of computer memory to display a 1-tera-
voxel image stack with three color channels (i.e., 10,0003 voxels)
and would use only 480 megabytes for a 1-petavoxel, three-channel
image stack (i.e., 100,0003 voxels) (Supplementary Note 2).

Although TeraFly adopts an often-used multiresolution pyra-
mid image organization for fast data accessing (Fig. 1a) and is
able to generate such hierarchical data much more efficiently than
BigDataViewer2 (2–7× the speed and 30–74× the memory savings)
(Supplementary Note 3), we believe that the optimization of data
organization alone is insufficient to achieve a real-time response
when a true 3D rendering (e.g., real-time
maximum intensity projection or alpha
blending) is considered. Thus, we imple-
mented two critical techniques to boost
TeraFly (Supplementary Note 4). The
first is a ‘mean shift of mean shift’ method
to accurately and instantly (typically <10
ms) estimate the 3D VOI when the user is
zooming in on the displayed image content
(Fig. 1b). This solves the challenging prob-
lem of mapping the 2D user input (i.e., the
mouse position on the screen) to the 3D
VOI the user sees at a higher magnification
level. The second is an effective fetch-and-
display strategy to instantly show an inter-
polated low-resolution version of the VOI’s

Figure 1 | Overview of TeraFly image and surface-
object visualization. (a) 3D image exploration
based on progressively higher-resolution VOIs
fetched from a multiresolution tiled image
pyramid data structure and displayed in distinct
3D viewers (one per pyramid layer) synchronized
for zooming in and zooming out. In this example,
an entire mouse brain image about 1 terabyte
(TB) in size was recursively downsampled five
times until the entire image could fit into the 3D
viewer at the lowest resolution. (b) Schematic
illustration of the 3D VOI estimation–based
‘mean shift of mean shift’. First, the mean-shift
method is applied on the voxel intensity along
each of the shooting rays for the calculation
of the corresponding bio-entity 3D locations.
Then the mean-shift strategy is again applied
on these 3D locations for the calculation of the
VOI center. (c) Image of L7-GFP whole mouse
cerebellum (110.1 gigabytes) with an overlay
displaying 220,800 TeraFly-curated Purkinje cells
as 3D markers. (d) Image of adult rat neuron
acquired with two-photon microscopy with
overlaid TeraFly-assisted 3D tracings generated at
different resolution scales and the corresponding
octree-based 3D curve point representation.

Pi Ray length

Pi
(1)

Pi
(2)

Pi

Vo
xe

l
in

te
ns

ity

~30 MB

z/2

x/2

~1 TB

y/2

Zoom in

Zoom out

a

b

d

Image resolution

Mouse scroll

Mouse scroll

VOI () x - y - z - t ⊆ 5D viewer size (user-selectable)

m in

m out

VOI (()) x - y - z - t ⊆ 5

c

Image 3D markers Image 3D curves Octree

Second mean shift

First mean shift

Shooting rays

image t while the higher-resolution data are quickly loaded and
filled in.

TeraFly enables quantitative analysis of big image data with mini-
mal human effort. The annotation of displayed biological structures
is done directly in the volumetric space of a 3D image stack (hence
the term ‘3D annotation’) with simple computer-mouse gestures
such as a single click or a single stroke. This includes the genera-
tion and curation of various surface objects such as 3D markers and
tubes that are used, for instance, for cell counting or the tracing of
long neurites (e.g., in a whole-brain image) or, further, to generate a
gold standard to feed semi- or fully supervised image analysis algo-
rithms, as well as for proofreading or evaluating the output of these
algorithms (Supplementary Note 5). We also designed a dedicated
image-exploration modality to boost users’ proofreading perfor-
mance (Supplementary Video 3) and used it to generate the most
complete and precise map of Purkinje cells in a whole mouse cerebel-
lum ever obtained5 (Fig. 1c and Supplementary Note 6). Compared
with other tools based on 2D annotation, our approach was consid-
erably faster and more precise (Supplementary Videos 4 and 5 and

np
g

©
 2

01
6

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

194 | VOL.13 NO.3 | MARCH 2016 | NATURE METHODS

CORRESPONDENCE

Supplementary Note 6). TeraFly also allows us to perform efficient
3D annotation for complicated biological structures (e.g., rat, mouse
and human neurons) in very large multidimensional images (Fig. 1d,
Supplementary Video 6 and Supplementary Note 6).

We implemented these 3D annotation functionalities by leveraging
the built-in ‘Virtual Finger’ algorithms of Vaa3D6, which map users’
inputs in the 2D plane of a computer screen to the 3D locations of
the corresponding biological structures. However, this alone would
not allow the efficient handling of the millions of 3D object points
(e.g., marker centers and curve nodes) that are likely to be produced
by the computerized analysis of big images. Thus, we used an octree
data structure to encode the annotated (or automatically produced)
3D objects (Fig. 1d). We generated a lookup table for efficient rep-
resentation, search and resampling of such 3D annotation data with
respect to any VOI (Supplementary Note 7).

We have applied TeraFly to several huge image data sets from
different modalities at the Allen Institute for Brain Science, Janelia
Research Campus of the Howard Hughes Medical Institute, the
European Human Brain Project and other places. To our knowledge,
TeraFly is the first free, open-source, cross-platform software tool for
3D integrated visualization and annotation of massive image data.

TeraFly has been implemented in C++ and is included in the
default Vaa3D installation available at http://www.vaa3d.org/.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (http://dx.doi.org/10.1038/nmeth.3767).

ACKNOWLEDGMENTS
We thank F.S. Pavone, L. Sacconi, L. Silvestri, J.P. Ghobril, R. Tsien, H. Zeng,
P. Keller and E. Betzig for providing the data sets we used in this work, as well as
for the useful discussions that helped us in the requirement analysis of our tool.

AUTHOR CONTRIBUTIONS
H.P. conceived the project while collaborating with A.B. and G.I. A.B., G.I. and
H.P. developed and tested the software and wrote the paper. L.O. proofread
automatic cell counts and tested the software.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Alessandro Bria1–3, Giulio Iannello1, Leonardo Onofri1 &
Hanchuan Peng3

1Department of Engineering, University Campus Bio-Medico of Rome, Rome,
Italy. 2Department of Electrical and Information Engineering, University of
Cassino and Southern Lazio, Cassino, Italy. 3Allen Institute for Brain Science,
Seattle, Washington, USA. Correspondence should be addressed to H.P.
(hanchuanp@alleninstituite.org).

1. Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Nat. Protoc. 9, 1682–1697
(2014).

2. Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P. Nat. Methods 12,
481–483 (2015).

3. Peng, H., Ruan, Z., Long, F., Simpson, J.H. & Myers, E.W. Nat. Biotechnol.
28, 348–353 (2010).

4. Long, F., Zhou, J. & Peng, H. PLoS Comput. Biol. 8, e1002519 (2012).
5. Silvestri, L. et al. Front. Neuroanat. 9, 68 (2015).
6. Peng, H. et al. Nat. Commun. 5, 4342 (2014).

np
g

©
 2

01
6

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.vaa3d.org/
http://dx.doi.org/10.1038/nmeth.3767
mailto:hanchuanp@alleninstituite.org

Supplementary Note 1. Related software

Driven by continuous advances in microscopy and related technologies, bioimage informatics that

tackles problems such as the computational analysis of biological images is becoming more and

more important (Peng, 2008; Walter, et al., 2010; Long, et al., 2012). Over the last 20 years, a

number of tools for visualizing, annotating, and quantitatively analyzing multidimensional

biological image data have been developed. They include public-domain tools such as ScanImage

(Pologruto, et al., 2003), µManager (Stuurman, et al., 2010), MicroPilot (Conrad, et al., 2011),

ImageJ (Abrmoff, et al., 2004), Vaa3D (Peng, et al., 2010), Ilastik (Sommer, et al., 2011), CellProfiler

(Carpenter, et al., 2006), CellOrganizer (Murphy, 2012), CellExplorer (Long, et al., 2009),

BrainExplorer (Lau, et al., 2008), ClearVolume (Royer, et al., 2015), and many commercial software

suites such as Zen (Zeiss), Amira (VSG), Imaris (Bitplane), ImagePro (MediaCybernetics),

Neurolucida (MBF Bioscience).

The major limitation of previous tools is that when applied to the terabyte-size images currently

generated by modern microscopy techniques (Silvestri, et al., 2012; Tomer, et al., 2014) it is hard

to load the entire image volume into computer memory quickly, let alone the fact that most current

computers do not even have enough memory to hold such big image data. Consequently, scalable

solutions that use multiresolution approaches have been recently proposed (Saalfeld, et al., 2009;

Jeong, et al., 2010; Pietzsch, et al., 2015; Amat, et al., 2015; Tinevez & Pietzsch, 2015). They assume

that image data are stored in a hierarchical data structure where each hierarchical level represents

a different resolution that can be independently loaded upon requests. Moreover, the data at each

resolution are stored in such a way that only the data corresponding to the Region of Interest (ROI)

have to be loaded into main memory for visualization or processing. Being able to select the

resolution and the ROI makes it possible to deal with datasets exceeding the available resources

(Peng, et al., 2014).

CATMAID (Saalfeld, et al., 2009) allows rapid, uninterrupted browsing of multi-terabyte data sets

and concurrent large-scale data annotation involving tens of millions of data points, even when

accessing the data remotely through the internet. CATMAID was initially developed for visualizing

and annotating large electron microscopy data sets generated in the field of connectomics, but it

was recently extended to support large light microscopy image data sets with up to five dimensions

(three spatial dimensions, color and time) (Amat, et al., 2015). CATMAID and its branches are

accessible through an internet browser and display image data superimposed with cell-lineage

data points in a tri-view arrangement (XY, YZ and XZ slices of the specimen). SSECRETT (Jeong, et

al., 2010) is a 2D slice-based volume exploration and manual annotation tool for extremely large-

scale neuroscience datasets. It is based on a client-server architecture where the dataset resides

on the server side and the client can request an arbitrary 2D cross-section view of the dataset.

BigDataViewer (Pietzsch, et al., 2015) is a Fiji (Pietzsch, et al., 2012) plugin to interactively navigate

and visualize virtual 2D slices from very large 5D terabyte-sized images from both local and remote

data sources. The tool is based on a custom HDF5 based data format that is optimized for fast

arbitrary re-slicing of the image at various scales. HDF5 (The HDF Group, 2014), the last version of

the Hierarchical Data Format is a data model, library, and file format for storing and managing data.

It supports an unlimited variety of datatypes, and is designed for flexible and efficient I/O and for

Nature Methods doi:10.1038/nbt.3767

high volume and complex data. MaMuT (Tinevez & Pietzsch, 2015) is a Fiji plugin that provides

interactive visualization, annotation, tracking and lineaging of very large, multiview image

datasets. MaMuT builds on TrackMate (Pietzsch, et al., 2012), a Fiji plug-in for single particle

tracking, and uses BigDataViewer both as a data backend and as a visualization frontend.

Unfortunately, the tools aforementioned are all based on 2D cross-sectional views or a combined

display with an arbitrary-angle cutting plane, which is often insufficient to observe complex 3D

structures and the relationship among multiple objects (e.g., cells) in a 3D or higher-dimensional

image. This leads to the inability to efficiently explore the complicated 3D image content and thus

to input user-specified information of the observed image patterns directly in the 3D space (Long,

et al., 2012). Hence, it is desirable to have efficient tools that integrate 3D visualization and

annotation functions but that can scale well on very large (terabyte-sized) images. Although a few

scalable tools provide preliminary capabilities of 3D visualization and annotation modules in the

context of very large scale of image datasets, these tools are limited owing to high expense of

licenses (Arivis (AG), Amira (VSG), Imaris (Bitplane)) and infrastructures (Paraview (Kitware

Inc.)). This presents an obstacle for the unbiased, high-throughput and quantitative analysis of

bioimage data and creates tremendous need for the development of new techniques that help

explore very large 3D data directly and efficiently without expensive virtual reality devices and/or

parallel computing infrastructures.

To our knowledge, TeraFly is the first free, open-source, and cross-platform software tool for true

3D visualization and 3D annotation of very large multidimensional volumes. In Table 1.1, we

compare TeraFly with the best available tools in the field. We limit our comparison to software

that (i) has been reported to visualize multidimensional (up to 5D) data sets whose size exceeds 1

terabyte on commonly available hardware (therefore Table 1.1 excludes all the tools mentioned in

the first paragraph of this section and the Paraview software (Kitware Inc.)); and (ii) natively

supports time series (therefore Table 1.1 excludes SSECRET).

 Arivis
(AG)

BigDataViewer

(Pietzsch, et al., 2015)
CATMAID

(Saalfeld, et al., 2009)
CATMAID

(Amat, et al., 2015)
MaMuT

(Tinevez & Pietzsch, 2015) TeraFly

rendering both 2D and 3D
2D (arbitrary

reslicing)
2D (tri-view) 2D (tri-view)

2D (arbitrary
reslicing)

both 2D and 3D

annotation approach 2D slice-by-slice N/A 2D slice-by-slice 2D slice-by-slice 2D slice-by-slice 3D

custom image format SIS (a) BDV HDF5 tile scheme (b) Keller Lab Block BDV HDF5

hierarchy of
TIFFs or Vaa3D

raw files;
and BDV HDF5

license proprietary open open open open open

Table 1.1. Visualization software for multidimensional multi-terabyte image data. (a) proprietary data format. (b) Data
stored as small 2D-tiles representing a 2D-scale pyramid following a primitive naming scheme.

Nature Methods doi:10.1038/nbt.3767

Supplementary Note 2. Visualization of Big-Image-Data

2.1 Introduction
TeraFly builds on top of the free, open-source, cross-platform Vaa3D system and extends its

powerful 3/4/5D image rendering capabilities (Peng, et al., 2010) to images of potentially

unlimited size. To achieve this goal, similarly to other tools designed for big image data

visualization (Supplementary Note 1), TeraFly adopts a multiresolution pyramid image that

enables fast access of small parts of an image volume at different scales (Supplementary Note 3).

Such hierarchical data organization alone, however, is insufficient to achieve a real-time response

when a true 3D rendering (e.g. real-time maximum intensity projection or alpha blending) is

considered. Thus, throughout the 3D exploration of the image, other critical solutions intervene to

boost the visualization performance (Supplementary Notes 4 and 5). In this supplement, we

describe the overall 3D image exploration approach and quantitatively characterize the

performance of our tool in terms of memory usage and visualization response time.

2.2 3D image exploration
Once the image is opened in TeraFly, the 3D image exploration starts by loading and displaying the

entire image content of the highest (and coarsest) multiresolution pyramid level, which by

construction can fit into the 3D viewer (Supplementary Note 3). As the user zooms-in with the

mouse scroll wheel into this coarse resolution image, TeraFly instantly (<10 ms typically)

generates the 3D Volume of Interest (VOI) best approximating the region currently viewed

(Supplementary Note 4), then loads the higher resolution data corresponding to this VOI and

renders it in a new 3D viewer quickly (Supplementary Note 5). Further zooms-in are processed

in the same way until the lowest level of the pyramid is reached. To zoom-out, TeraFly goes back

up through the image pyramid and redisplays the previously viewed VOIs. Leveraging the powerful

of Vaa3D’s multiple 3D viewers, TeraFly selectively displays and hides the 3D viewers

corresponding to different VOIs, thus giving the clue of a smooth 3D exploration of the image

(Supplementary Videos 1-2).

2.3 Memory usage
The 3D image exploration strategy previously described allows avoiding more complicated data

synchronization and caching techniques, which would need to be tailored to the underlying

hardware infrastructure. Instead, a simple caching strategy is used: throughout the navigation, the

displayed 3D viewers are cached in the graphic card memory and quickly restored both when

zooming-out, and when zooming-in a previously viewed VOI. Assuming 8 bits per pixel for display,

this requires storing in the graphic card memory (𝑘 + 1) × 𝐵𝑥 × 𝐵𝑦 × 𝐵𝑧 × 𝑐 × 𝐵𝑡 bytes at most,

being 𝑘 the number of pyramid layers, 𝐵𝑥, 𝐵𝑦, 𝐵𝑧 and 𝐵𝑡 the dimensions of the 5D viewer along 𝑥,

𝑦, 𝑧 (space) and 𝑡 (time) axes (default value is 256(𝑥) × 256(𝑦) × 256(𝑧) × 1(𝑧)), and 𝑐 the

number of channels. Based on the criterion to choose 𝑘 (Supplementary Note 3), and after simple

algebraic manipulations, the maximum memory requirement for a cubic image of 𝑁 pixels is

⌈(log 𝑁1/3 − log 𝐵) log2 𝑒 + 1⌉ × 𝐵3 × 𝑐 bytes where we chose 𝐵𝑥 = 𝐵𝑦 = 𝐵𝑧 = 𝐵 and 𝐵𝑡 = 1 (i.e.

Nature Methods doi:10.1038/nbt.3767

one time-point loaded and displayed at a time). Remarkably, this corresponds to only 336

megabytes of computer memory for an image stack with one teravoxel and three color channels

(i.e. 10,0003 voxels), and to only 480 megabytes for 1 petavoxel three-channels image stack (i.e.

100,0003 voxels).

2.4 Benchmarks
We tested the visualization of various 3D/4D image volumes of rat neurons and mouse brains with

sizes ranging from 0.3 gigabyte to 2.5 terabyte (Table 2.1). The statistics for each test case were

obtained by an experienced user on at least 100 trials of randomly selected target VOIs in

arbitrarily determined scales of the respective images. The total time for generation, loading and

displaying of a 3D VOI is reported in Fig. 2.1a for a MacBook Pro Retina connected to a 16 terabyte

QNAP TS-420 Network Attached Storage (NAS) via 1 Gbps LAN network. Similarly, we tested the

visualization of four 5D image stacks of zebrafish embryos with sizes ranging from 5 gigabyte to

1.3 terabyte (Table 2.2). Performance times for this experiment are reported in Fig. 2.1b.

Remarkably, in all the test cases considered the time scaled constantly on image size and remained

always within 1 second, regardless of the overall size and dimensions (3D, 4D, or 5D) of the data

sets tested, thus demonstrating that TeraFly can potentially smoothly visualize even larger multi-

dimensional image stacks.

Dataset Dimensions (𝑥 × 𝑦 × 𝑧 × 𝑐) Size (gigabyte)

Purkinje cells (a) 800 × 800 × 512 × 1 0.3

Rat neuron (b) 9,640 × 6,952 × 179 × 2 24.0

Whole mouse cerebellum (a) 8,249 × 3,662 × 3,646 × 1 110.1

Mouse hippocampus (a) 9,722 × 8,378 × 5,145 × 1 419.1

Whole mouse brain (a) 14,261 × 6,814 × 7,828 × 1 760.7

Whole mouse brain (c) 40,000 × 30,000 × 700 × 3 2,520.0

Table 2.1. 3D/4D image volumes used to test the visualization performance. (a) Acquired using Confocal Light Sheet
Microscopy (Silvestri, et al., 2012) for the Human Brain Project (courtesy of F.S. Pavone, L. Sacconi, L. Silvestri). (b)
Acquired using 2-photon microscopy (courtesy of R. Tisen). (c) Acquired using TissueCyte 2-photon imaging system
(courtesy of H. Zeng).

Dataset Dimensions (𝑥 × 𝑦 × 𝑧 × 𝑐 × 𝑡) Size (gigabyte)

Betzig fish data K 992 × 794 × 59 × 1 × 100 4.7

Betzig fish data B1 992 × 992 × 231 × 2 × 200 90.1

Betzig fish data B2 992 × 992 × 231 × 2 × 1,000 454.6

Keller 1,556 × 700 × 122 × 2 × 5,000 1,328.8

Table 2.2. 5D light-sheet microscopy image volumes used to test the visualization performance.

Nature Methods doi:10.1038/nbt.3767

(a)

(b)

Fig. 2.1. (a) Average total time for generation, loading and displaying of a 3D VOI for six 3D/4D image stacks with size
ranging from 0.3 gigabyte to 2.5 terabyte (Table 2.1). (b) Average total time for generation, loading and displaying of
a 3D VOI of one time frame at a time on four 5D image stacks with size ranging from 5 gigabyte to 1.3 terabyte (Table
2.2). For each test case, average generation (CPU), loading (I/O) and displaying (GPU) times are reported using
different shades of gray with error bars being twice the standard deviation of the data.

Nature Methods doi:10.1038/nbt.3767

Supplementary Note 3. File Format

3.1 Introduction
TeraFly adopts a multiresolution tiled pyramid image format that enables fast access of small parts

(tiles) of an image volume at different resolution scales. Section 3.2 gives the specification of this

format, Section 3.3 describes how to export a dataset using TeraConverter (included in Vaa3D),

and Section 3.4 provides benchmarks results for some of the datasets used in our experiments.

3.2 Format specification
Each TeraFly dataset contains a set of 3D image tiles, stored either as multipage TIFF (Adobe

Developers Association, 1992) or Vaa3D raw files (Peng, et al., 2010). The tile files are organized

in a hierarchy of nested folders composed by 6 levels (see Fig. 3.1). It is important to note that by

making individual tiles available as separate 3D image stacks and in an accessible format (i.e. in a

standard 3D TIFF or the Vaa3D raw file format that is used in several very large scale neuroscience

projects), we enable very flexible ways to access the data at both global and local scales at any time

when a user needs such data, as well as providing more robustness of the stored files in cases of

possible damage of the storage media (i.e. hard-drive failure). Our format also makes it possible to

save storage-space when the image content is sparse.

The complete specification of our hierarchical data format is given by the 6 levels of the hierarchy,

defined as follows:

 ℓ : contains the scale layers of the multiresolution pyramid, each stored into a folder named

RES(dim𝑦 × dim𝑥× dim𝑧), with dim𝑦, dim𝑥, and dim𝑧 being the dimensions (in voxels) of

the image along 𝑦, 𝑥, and 𝑧, respectively;

 𝑡 : contains the time points stored into folders named T_tttttt, with tttttt being 6 digits (0-9)

identifying the coordinate along 𝑡 (000000 for 𝑡 = 0);
optional: if there is just one time point, this level can be omitted (see Fig. 3.1, 4D format)

 𝑐 : contains the channels stored into folders named CH_cc, with cc being the channel index;
optional: for grayscale or color (RGB) images, this level can be omitted (see Fig. 3.1, 3D format)

 𝑦 : contains the tiles grouped by rows, stored into separate folders named in ascending

alphanumeric order. The higher the alphanumeric value, the higher the 𝑦 coordinate;
optional: folder names can optionally encode physical coordinates following the yyyyyy convention, where yyyyyy are 6

digits (0-9) identifying the coordinate along 𝑦 in terms of 𝑢 space units. For instance, if 𝑢 = 0.1 𝜇𝑚 and yyyyyy = 168270,

then the row is associated to the physical coordinate 𝑦 = 16.827 𝑚𝑚.

 𝑥 : contains the tiles grouped by columns, stored into separated folders named in ascending

alphanumeric order. The higher the alphanumeric value, the higher the 𝑥 coordinate;
optional: folder names can optionally encode physical coordinates following the yyyyyy_xxxxxx convention, where yyyyyy

and xxxxxx are 12 digits (0-9) identifying the coordinate 𝑦 and 𝑥, respectively, in terms of 𝑢 space units.

 𝑧 : contains the 3D image tiles stored either as compressed multipage TIFF (.tif) or as

uncompressed Vaa3D raw (.raw) files, named in ascending alphanumeric order. The higher

Nature Methods doi:10.1038/nbt.3767

the alphanumeric value, the higher the 𝑧 coordinate. Each file is a 3D image whose

dimensions along 𝑥, 𝑦, and 𝑧 are 𝑇𝑥, 𝑇𝑦, and 𝑇𝑧, respectively.

critical: 𝑇𝑦 must be the same for all the tiles contained in the current row level 𝑦, and it defines the height (in voxels) of

that row (all rows sum to dim𝑦). 𝑇𝑦 must be the same for all the tiles contained in the current column level 𝑥, and it

defines the width (in voxels) of that column (all columns sum to dim𝑥). 𝑇𝑧 can be different for the image files of the

current level 𝑧, but they must sum to dim𝑧.

optional: image filenames can optionally encode physical coordinates following the yyyyyy_xxxxxx_zzzzzz convention,

where yyyyyy, xxxxxx and zzzzzz are 18 digits (0-9) identifying the coordinate 𝑦, 𝑥, and 𝑧, respectively, in terms of 𝑢

space units.

Fig. 3.1. Schema of 3D, 4D, and 5D TeraFly formats. In the 3D example, an entire mouse brain image of size about 1

terabyte has been recursively downsampled 𝑘 = 6 times. In the same example, the tile subdivision at the various levels

of the pyramid has only illustrative purposes, and does not reflect the actual number of tiles along 𝑥, 𝑦 and 𝑧.

In addition to the 3D image files, each TeraFly dataset also contains the following metadata files:

 vmap.bin: a binary file stored at the level ℓ of the hierarchy of folders and containing the

image data that are instantly fetched and displayed when a volume is opened in TeraFly.

This file is generated automatically when a volume is opened for the first time, and the

image data are fetched from the appropriate resolution scale according to the actual

settings of the 3D viewer dimension (the higher the 3D viewer size, the higher the

resolution)(see Supplementary Note 5, Section 5.3.4(ii));

Nature Methods doi:10.1038/nbt.3767

 cmap.bin: a binary file stored at the level 𝑐 of the hierarchy of folders and containing internal

TeraFly metadata allowing efficient access to the image channels. This file is generated

automatically when a dataset is exported for TeraFly with TeraConverter. If this file is

missing, TeraFly can automatically regenerate it upon request (see Supplementary Note

5, Section 5.3.1);

 mdata.bin: a binary file stored at the level 𝑦 of the hierarchy of folders and containing

internal TeraFly metadata allowing efficient access to the 3D image tiles. This file is

generated automatically when a dataset is exported for TeraFly with TeraConverter; If this

file is missing, TeraFly can automatically regenerate it upon request (see Supplementary

Note 5, Section 5.3.1).

3.3 Exporting data sets for TeraFly with TeraConverter
Based on the underlying graphic hardware capabilities, TeraConverter generates the pyramid

image as follows. Let be 𝐼 the original, highest-resolution, very large-sized image to be imported.

Starting from 𝐼, another 𝑘 images {𝐼(1), 𝐼(2), . . . , 𝐼(𝑘)} are obtained by recursively downsampling by

two 𝐼(𝑗) from 𝐼(𝑗−1) ∀𝑗 = 1, . . . , 𝑘, where 𝐼(0) = 𝐼. This process is iterated until the lowest-

resolution image 𝐼(𝑘) fits within the 3D viewer of size 𝐵𝑥 × 𝐵𝑦 × 𝐵𝑧. These define the maximum

size in voxels of displayable image data in the 3D renderer and can be set by the user from TeraFly
(default is 256(𝑥) × 256(𝑦) × 256(𝑧) voxels) (see Supplementary Note 5, Section 5.3.4(ii)).

To get started, let’s open TeraConverter from Vaa3D by

which brings up the following dialog.

The dialog is divided into four sections (from top to bottom): (i) input form; (ii) output/conversion

form; (iii) help box; and (iv) status bar with start/stop button.

Advanced Vaa3D Menu Big-Image-Data TeraConverter

Nature Methods doi:10.1038/nbt.3767

In the input form, the user should first specify the input image format from the drop-down menu

and then the path where the image files are stored. Supported input formats are:

 TIFF (series, 2D): a folder containing a series (1+) of 2D TIFF files;

 TIFF (3D): single multipage 3D TIFF file;

 TIFF (tiled, 2D): three-leveled 𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile

composed by a series of 2D TIFF files;

 TIFF (tiled, 3D): three-leveled 𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile

composed by a series of multipage (3D) TIFF files;

 TIFF (tiled, 4D): four-leveled 𝑐-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile

composed by a series of multipage (3D) TIFF files;

 Vaa3D raw: single Vaa3D raw file containing a 3D image;

 Vaa3D raw (series, 2D): a folder containing a series (1+) of 2D Vaa3D raw files;

 Vaa3D raw (tiled, 3D): three-leveled 𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile

composed by a series of Vaa3D 3D raw files;

 Vaa3D raw (tiled, 4D): four-leveled 𝑐-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile

composed by a series of Vaa3D 3D raw files.

For time series, the user should check the Time series of option, provided that the time points are

stored according to the level 𝑡 specification of the TeraFly format (see Section 3.2).

Once the input path is inserted, simply pressing ENTER on the keyboard will import the inputted

volume and prepare for the conversion step, which brings up the following updated dialog.

Nature Methods doi:10.1038/nbt.3767

In the output form, the user should select the output format from the drop-down menu, and

provide the output path where the image files will be stored.

Supported output formats are:

 TIFF (tiled, 2D): ℓ-𝑡-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile composed by a

series of 2D TIFF files;

 TIFF (tiled, 3D): ℓ-𝑡-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile composed by a

series of multipage (3D) TIFF files;

 TIFF (tiled, 4D): ℓ-𝑡-𝑐-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile composed by a

series of multipage (3D) TIFF files;

 Vaa3D raw (tiled, 3D): ℓ-𝑡-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile composed

by a series of Vaa3D 3D raw files;

 Vaa3D raw (tiled, 4D): ℓ-𝑡-𝑐-𝑦-𝑥-𝑧 hierarchy of tiles (see Section 3.2) with each tile composed

by a series of Vaa3D 3D raw files.

For all the output formats considered, the 𝑡 level is not inserted in the output hierarchy in case the

input image consists of a single time point.

Other advanced options, which we suggest to leave at their default values, are:

 Resolutions: these are the resolution scales to be produced at level ℓ of the hierarchy (see

Section 3.2) and are automatically determined by TeraConverter following the approach

described at the beginning of this section. Optionally, the user can select which resolutions

have to be produced, or add more to the ones already in the list;

 Tile dims: these are the individual 3D image tile dimensions 𝑇𝑥, 𝑇𝑦, and 𝑇𝑧 (see Section 3.2).

Optionally, the user can set them to values higher than the actual image dimensions (e.g.

2000 × 2000 × 2000 in the example considered) to produce a nontiled pyramid, i.e. a

pyramid with just one big 𝑦-𝑥-𝑧 image block;

 downsampling method: the method used to generate the downsampled resolution scales of

the pyramid. Supported methods are: mean(2x2x2) that computes the average intensity for

each 2 × 2 × 2 image block , and max(2x2x2) that computes the maximum intensity in the

same block;

At the bottom of the conversion form, TeraConverter shows in the Estimated RAM usage field a

precise estimate of the computer memory that will be used during the conversion process. This is

computed as follows:

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝐴𝑀 𝑢𝑠𝑎𝑔𝑒 (𝑔𝑖𝑔𝑎𝑏𝑦𝑡𝑒𝑠) =
dim𝑥× dim𝑦× dim𝑐× 𝑏𝑝𝑝 × 2𝑘∗

8 × 109

where dim𝑥 and dim𝑦 are the input image size along 𝑥 and 𝑦, dim𝑐 is the number of channels, 𝑏𝑝𝑝

is the number of bits per pixel (usually 8 or 16), and 𝑘∗ is the highest resolution scale index among

those that have to be produced (𝑘∗ = 0 if only the original resolution scale is selected).

Once ready, the user can start the conversion by pressing the Start button. The progress bar

displayed at the bottom of the file dialog will show the status of the process along with an estimate

Nature Methods doi:10.1038/nbt.3767

of the remaining time. When the conversion ends, a message will inform the user and provide the

overall time elapsed (see screenshot below).

3.4 Benchmarks
We have benchmarked export to TeraFly’s format TIFF(tiled,3D) using default export settings (see

Section 3.3) from datasets of different sizes (see Table 3.1) in order to provide users with rough

estimates of export times for their own datasets. Moreover, to demonstrate the efficiency of our

conversion tool, we compared processing time, computer memory usage, and output image size to

that of BigDataViewer when converting the same datasets using similar settings.

For BigDataViewer, we used the following procedure as suggested by Pietzsch et al. (2015):

 from ImageJ, we opened a dataset using the Virtual Stack option. Specifically, for series of 2D

TIFF files, we used File > Import > Image Sequence… and checked the Virtual Stack option,

whereas for single multipage 3D TIFF files, we used File > Import > TIFF Virtual Stack;

 from ImageJ, we launched the BigDataViewer conversion tool using Plugins > BigDataViewer

> Export Current Image as XML/HDF5;

 from the Export for BigDataViewer file dialog, we always left the default options (automatic

mipmap setup and use deflate compression on) before launching the conversion process.

All benchmarks were repeated at least twice for each experiment, and they were run on a MacBook

Pro Retina (early 2015) with 2.5 GHz Intel Core i7 (4 cores), 16 gigabyte RAM, 500 gigabyte Solid

State Drive (SSD). All benchmarks used Java version 1.8.0_66 with 8 GB RAM maximum heap size

Nature Methods doi:10.1038/nbt.3767

as in Pietzsch et al. (2015). To minimize the input/output conflicts, the input images were read

from an external 2.0 terabyte USB 3.0 hard drive, whereas the output image were saved on the

internal MacBook SSD drive. The benchmark results are summarized in Table 3.2.

Dataset Dimensions (𝑥 × 𝑦 × 𝑧 × 𝑐) Image format

Purkinje cells 1 (a) 1,020 × 1,020 × 1,020 × 1 multipage 3D compressed TIFF (8 bits, grayscale)

Purkinje cells 2 (a) 1,020 × 1,020 × 1,020 × 1 series of 2D compressed TIFFs (8 bits, grayscale)

Purkinje cells 3 (a) 1,951 × 2,122 × 608 × 1 multipage 3D compressed TIFF (8 bits, grayscale)

Purkinje cells 4 (a) 1,951 × 2,122 × 608 × 1 series of 2D compressed TIFFs (8 bits, grayscale)

Rat neuron gray (b) 9,640 × 6,952 × 179 × 1 series of 2D compressed TIFFs (8 bits, grayscale)

Rat neuron color (b) 9,640 × 6,952 × 179 × 3 series of 2D compressed TIFFs (24 bits, RGB)

Mouse cerebellum (a) 8,249 × 3,662 × 3,646 × 1 series of 2D compressed TIFFs (8 bits, grayscale)

Table 3.1. 3D/4D image volumes used to test the dataset export performance. (a) Acquired using Confocal Light Sheet
Microscopy (Silvestri, et al., 2012) for the Human Brain Project (courtesy of F.S. Pavone, L. Sacconi, L. Silvestri). (b)
Acquired using 2-photon microscopy (courtesy of R. Tisen).

Experiment Raw data size
Output pyramid image size (a) Memory usage Export time

TC BDV TC BDV TC BDV

Purkinje cells 1 1.06 GB 0.62 GB (𝐿=3) 0.59 (𝐿=3) 0.04 GB 1.87 GB 1 m 2 m

Purkinje cells 2 1.06 GB 0.62 GB (𝐿=3) 0.59 (𝐿=3) 0.04 GB 8.21 GB 1 m 18 m

Purkinje cells 3 2.52 GB 1.23 GB (𝐿=5) 1.20 GB (𝐿=5) 0.07 GB 3.89 GB 2 m 4 m

Purkinje cells 4 2.52 GB 1.23 GB (𝐿=5) 1.20 GB (𝐿=5) 0.07 GB 8.17 GB 2 m 29 m

Rat neuron gray 12.00 GB 5.44 GB (𝐿=5) 6.09 (𝐿=7) 1.07 GB 8.63 GB 11 m 27 m

Rat neuron color 35.99 GB 15.63 GB (𝐿=5) error (b) 3.22 GB error (b) 30 m error (b)

mouse cerebellum 110.14 GB 28.97 GB (𝐿=6) 30.14 GB (𝐿=7) 0.97 GB 8.61 GB 89 m 201 m

Table 3.2. Benchmark results for TeraConverter (TC) and BigDataViewer (BDV) when exporting datasets of different
sizes and formats. (a) 𝐿 denotes the number of pyramid levels. (b) the message was “only 8, 16, and 32-bit images are
currently supported”

On average, TeraConverter was 7x faster and 74x more memory efficient than BigDataViewer, and

yielded a slightly better compression ratio (0.44 compared to 0.45 of BigDataViewer). In two cases

(Purkinje cells 2 and Purkinje cells 4) BigDataViewer was particularly slower, perhaps due to an

issue triggered by the different input format (multipage 3D TIFF). In another case (Rat neuron

color) BigDataViewer displayed an error message indicating that it currently does not support

export from color images (see Table 3.2). However, even after excluding these challenging yet

important use-cases, TeraConverter, on average, was still 2x faster and 30x more memory efficient

than BigDataViewer, thus demonstrating the efficiency of our conversion tool.

Nature Methods doi:10.1038/nbt.3767

Supplementary Note 4. Instant zoom-in

4.1 Introduction
Throughout the exploration of the volumetric image, TeraFly translates user mouse drags and

scrolls into Volumes of Interest (VOIs) to be displayed from the appropriate pyramid layer

(Supplementary Note 2). Whereas a multiresolution pyramid data structure is necessary for

effective data accessing, it alone would not allow to achieve real-time performance when a true 3D

rendering (e.g. real-time maximum intensity projection or alpha blending) is considered. Thus, in

this supplement we propose two critical techniques that make TeraFly much faster. These two

techniques are a robust random-access VOI estimation method and an effective fetch-and-display

strategy that gives the clue that the system has instantly responded to the request to find a 3D VOI,

while the full image content is loaded quickly.

4.2 Mean-shift of mean-shift (MSMS)
We propose a “mean-shift of mean-shift” (MSMS) method to accurately estimate 3D VOIs that a

human user likes to see when the user is zooming-in or out the displayed contents in a 3D viewer

of Vaa3D. In the context of TeraFly, MSMS replaces the built-in “Virtual Finger” algorithms

(referred as ‘bVF’ below) of Vaa3D (Peng, et al., 2014), which map users’ inputs in the 2D plane of

a computer screen to the 3D locations of bio-entities (for example, cells, neurons or microtubules)

in the volumetric space of a 3D image stack. We noted that bVF algorithms might not be robust to

produce accurate VOIs when there were a lot of background noises in the displayed image area.

The MSMS algorithm is described as follows. First, we hypothesize that the user is zooming-in on

a region containing one or more bio-entities which appear brighter than the surrounding

background. Thus, we define a circle of radius 𝑑 centered on the viewport’s center, and then

randomly generate 𝑛 2D points (seeds) within it. Some seeds will fall on (or very close to) the

displayed bio-entities, whereas others will fall on the background. Then, for each seed, we consider

the intensity profile along the shooting ray orthogonal to the screen, and apply the mean-shift (MS)

method (Fukunaga & Hostetler, 1975) to find the mode of the intensity distribution. The MS

algorithm begins by finding the center of mass (CoM) of the projection ray (see Algorithm 1, line

4), and then repeatedly reestimates a CoM using progressively smaller intervals around the

proceeding CoM until convergence (see Algorithm 1, lines 5-11). Here, we hypothesize that the

point to which MS converges will provide the missing third coordinate to map the 2D seed, which

is defined on the screen, to the 3D point in the volumetric image. When there are multiple color

channels, MS is applied to each color channel separately and the 3D location is estimated by finding

the one with the maximal intensity among candidates detected for all colour channels

independently. After this step, all the 𝑛 2D seeds have been mapped to the corresponding 3D

locations. However, only the 3D points corresponding to the bio-entities displayed on the

foreground will form a dense cluster, whereas the others will fall on random background locations.

To robustly estimate the center of this cluster from all the 3D points, we apply a formulation of the

MS algorithm suited for clustering. At every algorithm iteration, each 3D point shifts to the CoM

calculated in a sphere of radius 𝑟 (see Algorithm 1, lines 23-30). The algorithm ends when there

no more shifts are detected (see Algorithm 1, line 31), i.e. when all 3D points converge to the center

Nature Methods doi:10.1038/nbt.3767

of the densest cluster of 3D points. Intuitively, this can be viewed as finding the mode of a data

point distribution, with data points belonging to the three-dimensional Euclidean space. Finally,

we calculate the VOI as a box centered on the mode with size 𝐵𝑥 × 𝐵𝑦 × 𝐵𝑧, which corresponds to

the 3D viewer size (default value is 256(𝑥) × 256(𝑦) × 256(𝑧)). We typically used 𝑛 = 20, 𝑑 =

10% of the viewport diagonal, and 𝑟 = 100.

We evaluated the accuracy of the MSMS based VOIs, compared to those generated based on both

human observation and bVF. In the scale of 1 (wrong) to 10 (perfect), MSMS had an average score

9.6 over 100 trials, which was nearly perfect compared to what a user would expect. On the

contrary, bVF achieved an average score 7 in similar comparison. MSMS outperformed bVF

especially on the lower-resolution layers of the images with low contrast and SNR (Fig. 4.2). Next,

we compared the computation time of a 3D VOI with MSMS and bVF for six different image stacks

of various sizes (Fig. 4.1b). Remarkably, the computation time for MSMS was well below 10

milliseconds in all the test cases as for bVF, thus indicating we successfully eliminated one

substantial bottleneck in terabytes data visualization without introducing any human detectable

delay.

4.3 Fetch-and-display strategy
We developed a “fetch-and-display” method to ensure a very fast response from TeraFly when new

data was visualized. The goal for this method was that when the mouse scrolls and zooms-in to a

VOI, the higher resolution image content of such VOI will be retrieved from the file system and

displayed as quickly as possible for fast and smooth exploration of the image. We accomplished

this task by performing, in parallel, two different operations: (i) reusing part of the currently

viewed content to display instantly a linearly interpolated preview of the VOI; and (ii) loading from

the pyramid image only the blocks that contain the required image content. More formally, let be

𝑉𝑂𝐼ℓ be the VOI currently viewed that belongs to the pyramid image level ℓ (𝑉𝑂𝐼ℓ ≡ 𝐼(𝑘) when the

exploration starts, with 𝐼(𝑘) being the highest pyramid image level in a pyramid of 𝑘 + 1 layers)

and 𝑉𝑂𝐼ℓ′
the VOI to be retrieved and displayed from the higher resolution layer ℓ’, with ℓ’≤ ℓ

(usually ℓ’= ℓ − 1). Then, TeraFly interpolates to the resolution of ℓ’ the portion of 𝑉𝑂𝐼ℓ that

intersects with 𝑅𝑂𝐼ℓ′
and displays the result. This gives the clue that the system has correctly and

instantly responded to the request, and also makes more acceptable to wait for the full image to be

loaded. Meanwhile, in parallel, TeraFly loads the image content from the blocks of the pyramid

image layer ℓ’ that intersect with 𝑉𝑂𝐼ℓ′
and updates the display with the higher resolution data.

Nature Methods doi:10.1038/nbt.3767

Nature Methods doi:10.1038/nbt.3767

 (a)

(b)

Fig. 4.1. (a) Schematic illustration of the 3D VOI estimation based MSMS. (i) First, the mean-shift method is applied on

the voxel intensity along each of the 𝑛 shooting rays for the calculation of the corresponding bio-entity 3D locations.

(ii) Then, the mean-shift strategy is again applied on these 3D locations for the calculation of the VOI center. (b)

Average 3D-ROI computing time with MSMS and bVF for six 3D/4D image stacks with size ranging from 0.3 gigabytes

to 2,520 terabytes (see Table 2.1).

Nature Methods doi:10.1038/nbt.3767

Fig. 4.2. (a) The lowest-resolution layer of a whole mouse brain image in which only a few cells of the hippocampus

express Green Fluorescent Protein (GFP). (b) Zoom-in using MSMS. (c) Zoom-in using bVF (Peng, et al., 2014).

Nature Methods doi:10.1038/nbt.3767

Supplementary Note 5. User Guide

5.1 Introduction
TeraFly is a tool developed on top of Vaa3D (Peng, et al., 2010) to allow real-time (i.e. subsecond)

visualization and assisted analysis of terabytes of multidimensional volumetric images. The tool

has been implemented in C++ with Qt and OpenGL and it is freely and publicly available both as

open-source and as binary package along with the main Vaa3D distribution.

TeraFly comes with an open data format based on a multiresolution tiled pyramid image that

enables fast access of small parts (tiles) of an image volume at different resolution scales. This data

format is based on the open-standard TIFF format (Adobe Developers Association, 1992), and

consists of a set of image files organized into a hierarchy of 𝑛 + 1 levels of folders (𝑛 being the data

dimensionality, e.g. for 3D datasets 𝑛 = 3 up to 𝑛 = 5 for 5D datasets). The complete specification

of this data format is described in the Supplementary Note 3 along with the procedure to export

a dataset to the TeraFly’s format using our tool TeraConverter (included in Vaa3D).

This supplement describes common use cases for TeraFly and the TeraFly software itself

(installation, user interface, available functionalities, etc.). Since TeraFly is in ongoing

development, this supplement might not include the most recent updates, or it could be based on

a slightly different naming of the various functionalities available. In this supplement, we use the

version 2.1.0 of the TeraFly software.

5.2 Installation
From versions 2.0.0 and later, TeraFly is directly integrated into Vaa3D. Thus, it is only required to

install Vaa3D (versions 3.*) to be able to use TeraFly. The procedure for installing Vaa3D and

launching TeraFly is described as follows:

1. go to http://vaa3d.org.

2. click on the ‘Download’ tab.

3. from the pull-down menu, choose the appropriate program corresponding to your

operating system (Mac, Linux or Windows) and download it to your local computer. The

Vaa3D program is often compressed as a ZIP file and you need to unzip it before use.

 for Linux and Windows, unzip the program into a new folder before use.

 for Mac, unzip the program to generate an installer program for standardized

installation. Double-click the installer program to launch a GUI of installation, and

enter the user password to complete the installation, which will put the Vaa3D

program under the /Applications/vaa3d folder on the local computer.

4. run the Vaa3D program to launch the GUI.

 for Windows, double-click the program vaa3d_msvc.exe.

Nature Methods doi:10.1038/nbt.3767

http://vaa3d.org/

 for Linux, on a command-line console, enter the folder that contains the unzipped

program and type ./start_vaa3d.sh command to run.

 for Mac, double-click the program /Applications/vaa3d/vaa3d64.app (without

displaying the log information) or on the command line console run the command

/Applications/vaa3d/vaa3d64.app/Contents/MacOS/vaa3d64 to start the GUI with the

running log information displayed.

5. launch TeraFly from

5.3 User Interface
TeraFly has a friendly and usable User Interface (UI) designed to maximize the image visualization

area while providing a number of components and functionalities to boost 3D visualization and

annotation. The overall scheme of the UI is depicted in Fig. 5.1. In the following subsections, we

describe in detail each component of the TeraFly’s UI. The components marked as ‘advanced’

correspond to advanced use cases, whose description is out of the scope of this supplement.

Fig. 5.1. The graphical user interface of Vaa3D-TeraFly that has a number of components (1)~(9). (1) Menu bar. (2)

Menu toolbar. (3) Tab switch. (4) TeraFly’s exploration controls. (5) TeraFly’s proofreading controls. (6) Interactive

help box. (7) Status bar. (8) Vaa3D 3D viewport and visualization controls. (9) 3D object annotation toolbar.

Advanced Vaa3D Menu Big-Image-Data TeraFly

Nature Methods doi:10.1038/nbt.3767

5.3.1 Menu bar
The TeraFly’s menu bar contains the following menus:

 open a TeraFly volume

 open a HDF5 (BigDataViewer) volume

 open a recent volume

 close the current volume

 load 3D annotations from a .ano file

 save 3D annotations to a .ano file

 : volume import options (advanced)
- regenerate metadata files mdata.bin and cmap.bin (see Section 3.2)

- regenerate volume map file vmap.bin (see Section 3.2)

 : annotation display options
- : marker display options

- size

- VOI extra margin size (advanced)

- : curve display options
- aspect (3D tube / 2D skeleton)

- skeleton width

- virtual space size (auto / unlimited) (advanced)

 : image exploration options (advanced)
- : directional shifts options (advanced)

- : fetch-and-display strategy (preview/streaming/direct) (advanced)

 : annotation utilities for 3D markers (e.g. cells)
- : export to Vaa3D/TeraFly .apo from other formats (e.g. VTK, MaMuT)

- : analyze / compare .apo annotation files

 : generation of time series (advanced)

 show message log (only for developers)

 set message verbosity level (only for developers)

 : shows version info and changelog.

On MacOS, the menu bar is automatically integrated into the OS menu bar. On other operative

systems (e.g. Windows, Linux), the menu bar is right above the Menu toolbar (Section 5.3.2).

File TeraFly Menu

Options TeraFly Menu

Utilities TeraFly Menu

Debug TeraFly Menu

Help TeraFly Menu

Import

Annotations

Markers

Curves

Navigation

Shifts

Fetch-and-display

Annotations Markers

Convert

Analyze

Time-series

Nature Methods doi:10.1038/nbt.3767

5.3.2 Menu toolbar
The menu toolbar is described as follows:

(i) open a new volume (TeraFly or HDF5) through a File Dialog or opens a recently volume from

the displayed pull-down menu containing a list of the recently opened volumes.

(ii) close the currently opened volume.

(iii) display or hide the TeraFly’s 3D object annotation toolbar (Section 5.3.9).

(iv) display the tool’s info and changelog.

5.3.3 Tab switch
The tab switch is described as follows:

 TeraFly controls: shows the TeraFly controls (Section 5.3.4 and 5.3.5);

 Vaa3D controls: shows the Vaa3D controls (Section 5.3.8);

 Volume’s info: shows a panel containing information on the currently opened image (e.g.

size, voxel dimensions, tile dimensions).

5.3.4 TeraFly exploration controls
The TeraFly’s exploration controls are grouped into three categories: (a) “Viewer”, to set up the 3D

viewer dimensions and image resolutions; “Zoom-in/out”, to set up advanced options for the

mouse-scroll Google-Earth like zoom-in and zoom-out; and “Volume Of Interest (VOI)’s

coordinates”, to check and specify the portion of the volume to be displayed.

Individual controls are described as follows.

(i) (advanced) image resolution composed by a pull-down menu and a heat map like bar. From

the pull-down menu, the user can select the resolution at which he/she wants to display the

Nature Methods doi:10.1038/nbt.3767

currently viewed volume / currently selected volume of interest (VOI). The heat map like

bar indicates the currently displayed image resolution (the "hotter", the higher);

(ii) set the Vaa3D 3D viewer x-y-z (space) and t (number of time points) dimensions, i.e. the

amount of image data displayed at the time. The larger, the more graphic card memory is

used and the slower is the visualization. Suggested range is [100,300] for x-y-z and [1-10]

for 𝑡;

(iii) (advanced) choose from pull-down menu the method used to generate the volume of

interest (VOI) when zooming-in with the mouse scroll;

(iv) (advanced) set the zoom-in threshold value (see Vaa3D controls > Zoom & Shift > Zoom,

Section 5.3.8) to trigger the image resolution increase when zooming-in with the mouse

scroll. The default is 50. Set it to 100 to disable this feature, so that TeraFly will never

increase the image resolution when zooming-in;

(v) (advanced) set the zoom-in cache sensitivity value. This corresponds to the overlap

between the VOI to be displayed and the VOI already in the cache required to instantly

recover and display the VOI from the cache, instead of loading new data from the storage.

Sensitivity of 0% means that TeraFly will always use the cache, whereas 100% means that

TeraFly will always load the image data from the storage;

(vi) (advanced) set the zoom-out threshold value (see Vaa3D controls > Zoom & Shift > Zoom,

Section 5.3.8). Similarly to the zoom-in threshold value, this changes the zoom factor (see

Vaa3D controls > Zoom & Shift > Zoom, Section 5.3.8) that triggers the image resolution

decrease when zooming-out with the mouse scroll. The default value is 0. Set it to -100 to

disable this feature, so that TeraFly will never decrease the image resolution when

zooming-out;

(vii) reset all zoom-in/out controls to default values;

(viii) interactive 3D reference system. During 3D visualization, this indicates how the displayed

image is oriented in the 3D space and allows the user to change the volume orientation by

dragging the displayed cube with the mouse towards the desired direction. In proofreading

mode, this indicates the position of the displayed block in the whole image (Section 5.3.5);

(ix) indicates the currently displayed time point and the total number of available time points

(5D data only);

(x) directional shifts. These buttons (one pair for every axis x-y-z-t) allow the translation of the

3D viewer throughout the image along the corresponding axes by an amount that can be

changed from Options > Navigation > Directional shifts (see Section 5.3.4(x)). Default is 50%

for x-y-z and 0% for t;

(xi) (advanced) specify the volume of interest absolute spatial coordinates, i.e. referred to the

highest resolution image. This corresponds to use the Vaa3D volume-cut scrollbars and can

be used to specify a VOI to be displayed at a higher resolution (i.e. using the Resolution

controls, see (i)) or to be analyzed in proofreading mode.

Nature Methods doi:10.1038/nbt.3767

5.3.5 TeraFly proofreading controls
TeraFly’s proofreading modality allows to perform a stoppable/resumable block-by-block scan of

the entire volume (or a selected VOI) to proofread automatic cell counts or neuron reconstructions.

When the proofreading modality is on, it is not possible to change the image resolution with zoom-

in/zoom-out or by using the directional shifts (Section 5.3.4(x)).

The proofreading panel UI’s elements are depicted and described as follows.

(i) start or terminate the proofreading session.

(ii) QuickScan. Scrolling the mouse wheel in this area allows instant inspection of the blocks to

roughly check hundreds of blocks per minute and load only the nonempty ones. Pressing

“Enter” loads the currently viewed block.

(iii) maximum intensity projection along 𝑧 of the block being scanned. It also displays the block

coordinates and the number of annotations points (corresponding to cells or neuron

segments), to allow the user deciding whether to load (or skip) this block.

(iv) dialog displayed when a proofreading session starts (see (i)). It allows to choose the

following settings to set up the proofreading session:

- VOI: the volume of interest to proofread. This can be modified using the Vaa3D

volume cut scrollbars controls (Section 5.3.8) or the TeraFly’s VOI inputs (Section

5.3.4(xi));

- Block size: block dimensions along 𝑥, 𝑦, and 𝑧. They can be modified using the

TeraFly’s 3D viewer dimensions (Section 5.3.4(ii)). The larger the block, the fewer

blocks will be needed for the block-by-block scan of the selected VOI;

Nature Methods doi:10.1038/nbt.3767

- Resolution: the resolution scale at which the image should be scanned. The coarsest

the resolution, the fewer the blocks needed for the scan of the VOI;

- Scan pattern: the pattern that defines the scan-path. For instance, “X -> Y -> Z” means

to move along the 𝑥 axis first and, when reached the rightmost block, move along the

𝑦 axis and, when reached the bottommost block, move along the 𝑧 axis, and so on;

- Block overlap: the overlap (in percentage) between two adjacent blocks. Some

overlap is usually needed to avoid missing errors in the boundary regions;

- Per-block time: the inputted estimate of per-block analysis time, which serves to

calculate the overall estimated time for the entire proofreading session (see last

point of this list);

- Volume coverage: the coverage (in percentage) of the selected VOI with respect to

the whole image;

- No. of blocks: the calculated total number of blocks. This depends on the VOI, Block

size, Block overlap, and Resolution inputs;

- Estimated time: the overall estimated time for the entire proofreading session. This

is calculated as Per-block time × No. of blocks.

5.3.6 Interactive helpbox
This text box displays helpful information on the various components of the TeraFly’s UI. Just

moving the mouse over one of these components will trigger the corresponding description to

appear in the box (hence the name “interactive helpbox”).

5.3.7 Status bar
The TeraFly’s status bar displays the information (e.g. kind of operation, progress percentage,

remaining time) related to the operation currently performed in background. Usually, TeraFly is

so fast that the update of the status bar cannot even be noticed. Only when the operation involves

a massive amount of input/output operations (such as when visualizing hundreds of time points

at the time, see Section 5.3.4(ii)) the status bar updates can be noticed.

Nature Methods doi:10.1038/nbt.3767

5.3.8 Vaa3D 3D viewport and visualization controls
We provide here the most important user guidelines for the Vaa3D viewport/3D renderer and for

the Vaa3D visualization controls that can be accessed from the TeraFly’s Tab Switch (Section 5.3.3).

For more details, please visit the official Vaa3D website at http://vaa3d.org.

(i) 3D interactive viewer: visualize and explore the image data in 3D smoothly using:

 rotation: hold the mouse left button and move towards the desired rotation

direction.

 zoom: mouse scroll down (zoom-in), mouse scroll up (zoom-out) or double-click to

the desired location (only in TeraFly).

 shift: use the arrow keys (more precise) or press SHIFT + mouse left button to drag

the image towards the desired direction.

To access the useful Virtual Finger-powered 3D object annotation tools (Peng, et al., 2014),

right-click on the image and choose the desired functionality from the pop-op menu. Some

examples are:

- “1-right-stroke to define a marker” to define a marker with one mouse right-stroke

directly on the displayed object (e.g. a cell).

- “1-right-stroke to define a 3D curve” to define a 3D curve with one mouse right-

stroke along a displayed linear structure (e.g. a neurite).

- “Zoom-in HighRezImage: 1-right-stroke ROI’ to zoom-in to the ROI defined with one

mouse right-stroke.

(ii) time scrollbar: scroll through the t axis and select the desired time point (5D data only).

Nature Methods doi:10.1038/nbt.3767

http://vaa3d.org/

(iii) rendering controls: change the image/surface objects rendering options. This includes “Vol

Colormap”, a useful dialog to adjust the image LUT.

(iv) volume cut scrollbars: specify the volume of interest to display.

(v) rotation, zoom, and shift controls: these are alternative ways to control rotation, zoom and

shift without using mouse drags and scrolls.

5.3.9 3D object annotation toolbar
The TeraFly’s 3D annotation toolbar consists of a set of tools designed to boost the visualization-

assisted analysis and proofreading of the displayed image and surface data (e.g. cells, neuron

reconstructions). These tools are described in the following table.

Open a .ano linker file. A .ano file contains a list (one or more) of annotation files
supported by Vaa3D (i.e. .apo, .marker, .swc).

Save 3D surface objects (i.e. cell markers, point clouds, tubules) to the already opened
.ano file (it will be overwritten).

Save annotations to a new .ano file.

Deletes all 3D surface objects in the image (cannot be undone).

Undo the last 3D object edit action.

Redo the last 3D object edit action.

Add one (or more) 3D marker(s) with one right-click.

Add one (or more) 3D marker(s) with two right-clicks (the two clicks should be made
from two different viewing angles).

Remove one (or more) 3D marker(s) with one right-click. Only one marker at the time
can be removed.

Remove multiple 3D markers with one right-stroke. All the 3D markers within the
contour drawn with the mouse will be removed.

Show / hide the 3D markers around the displayed volume of interest (VOI). The outer
margin size can be set from Options > Annotations > Markers -> Virtual margin size (see
Section 5.3.1) Default is 20% of the VOI.

A shortcut to access to the Options menu (see Section 5.3.1).

Nature Methods doi:10.1038/nbt.3767

5.4 Use cases
In this section we provide a step-by-step guideline for common use cases which require little or no

previous training or experience with our TeraFly software. When needed, we will refer to our test

data repository (link) for the download of a specific dataset.

5.4.1 Opening a TeraFly dataset
(i) download and unzip one of the test datasets available from the our test data repository.

(ii) launch Vaa3D and then launch TeraFly from the menu ‘Advanced’ > ‘Big-Image-Data’ >

'TeraFly'.

(iii) from the TeraFly menu bar (Section 5.3.1) or from the menu toolbar (Section 5.3.2) click on

the ‘Open TeraFly volume’ button. From the file dialog, select any of the volume folders

starting with “RES” (e.g. RES(255x255x255)). Each of these folders stores a different

volume resolution (Supplementary Note 3, Section 3.2). Whatever folder is chosen,

TeraFly will display the one corresponding to the lowest resolution image.

5.4.2 Image exploration
(i) open a dataset (Section 5.4.1).

(ii) in the 3D viewer window (Section 5.3.8(i)), press and hold the left mouse button to rotate

the 3D-rendered image freely.

(iii) in the 3D viewer window, hold the ‘Shift’ key, and then press and hold the left mouse button

to shift around the 3D-rendered image freely.

(iv) in the 3D viewer window, use the mouse scroll wheel to zoom in or zoom out on the 3D-

rendered image freely. You may notice when TeraFly switches to the higher (or to the

lower) resolution image just as Google Earth does. The higher the resolution, the smallest

portion of the volume is displayed.

(v) in the 3D viewer window, from the menu accessible by right-clicking on the image, select

‘Zoom-in HighRezImage: 1-right-stroke ROI’ to zoom-in to the VOI defined with one right-

stroke.

(vi) in the 3D viewer window, use the time scrollbar to move along the time points (5D data

only)(Section 5.3.8 (ii)).

(vii) in the TeraFly window, select the “Vaa3D controls” tab from the Tab switch (Section 5.3.3)

and then click on the “Vol Colormap” to change brightness/contrast (Section 5.3.8 (iii)).

From the same dialog, you can change other visualization options, such as rendering (MIP,

mIP, alpha, X-Section) and 𝑧-thickness.

(viii) in the TeraFly window, select the “TeraFly controls” from the Tab switch (Section 5.3.3) and

then use the directional shifts (Section 5.3.4(x)) to allow the translation of the 3D viewer

along the corresponding axes.

Nature Methods doi:10.1038/nbt.3767

https://drive.google.com/folderview?id=0B8KT_cRbCqAId09aMm9uSUdkUGc&usp=sharing

5.4.3 3D annotation of biological structures
We describe in this section how to generate 3D markers and 3D curves for the displayed biological

structures (e.g. cells, neurites, vessels) and how to curate (modify, annotate, delete, save/load)

such data directly in the volumetric space of a 3D image stack (hence the term ‘3D annotation’).

Applications of these annotation tools include (but are not limited to) cell counting, neurite tracing

(e.g. in a whole brain image), vessel tracing, the generation a “gold standard” to feed semi- or fully-

supervised image analysis algorithms and the proofreading of the output of these algorithms.

5.4.3.1 Generation and curation of 3D markers
(i) download and unzip the mouse.cerebellum.1GB.zip dataset (courtesy of F.S. Pavone, L.

Sacconi, L. Silvestri) from our test data repository and open it in TeraFly (Section 5.4.1).

(ii) adjust brightness/contrast as needed (Section 5.4.2).

(iii) zoom-in to the higher resolution scales until the cells can be clearly seen.

(iv) from the TeraFly 3D object annotation toolbar displayed on the left (Section 5.3.9), activate

the “1-right-click to define a marker”() tool to input 3D markers directly on the image

with one mouse right-click. For a more precise cells pinpointing, activate the “2-right-click

to define a marker”() tool to input 3D markers directly on the image with two mouse

right-clicks (from two different viewing angles).

(v) zooming-in or out to other resolution scales will also scale the size of the displayed markers,

while maintaining their absolute position in the image space. To change the size of the

displayed markers, go to ‘Options’ > ‘Annotations’ > ‘Markers’ > ‘Size’ (Section 5.3.1).

(vi) to remove one marker at the time, activate the “1-right-click to delete a marker”() tool

and right-click on the marker to be deleted.

(vii) to remove multiple markers at the time, activate the “1-right-stroke to delete a group of

markers”() tool and draw a curve with one mouse right-stroke around the markers to be

deleted. Hold the ‘SHIFT’ key to delete only the markers along the curve.

(viii) to undo/redo, click on the and buttons, respectively.

(ix) to input text annotations for a specific marker, right-click on it to activate the pop-up menu

for that marker and select the first menu entry “Marker #N…”. This will bring up a dialog

where the annotation text can be inserted.

(x) to change the color of a specific marker, right-click on it to activate the pop-up menu for

that marker and select the “Color” entry.

(xi) to save the markers and related annotations to a new .ano/.apo file, use the “Save annotation

as”() tool and select the output filename from the file dialog.

(xii) to save the markers and related annotations to the already imported .ano/.apo file, use the

“Save annotations”() tool (it will overwrite the .apo file).

Nature Methods doi:10.1038/nbt.3767

(xiii) to load the markers and related annotation from an existing .ano/.apo file, use the “Load

annotations”() tool and select the input file from the file dialog. For instance, you might

want to open the somas-subvol.ano (already present in the test dataset) which contains the

automated cell counts for the entire volume.

(xiv) to delete all the markers in the image, use the “Clear annotations” () tool.

5.4.3.2 Generation and curation of 3D curves
(i) download and unzip the rat.neuron.zip dataset (courtesy of R. Tisen) from our test data

repository and open it in TeraFly (Section 5.4.1).

(ii) adjust brightness/contrast as needed (Section 5.4.2(vii)).

(iii) from the coarsest resolution scale image (i.e. the one displayed when the image volume is

opened), right-click on the image to activate the pop-up menu and select ‘1-right-stroke to

define a 3D curve (ver 2a)’ to trace linear structures (e.g. neurites) directly on the image with

one right-stroke. At this coarse resolution, only the thicker neurites can be traced.

(iv) creating a 3D curve will also enable the curve editing mode, which activates additional

options from the right-click pop-up menu. To exit from the curve editing mode, select the

“finish editing this neuron” option from the right-click pop-up menu. To re-enter the curve

editing mode, right-click on the curve tree to be edited and select the “edit this neuron”

option.

(v) to input text annotations for a specific curve segment, right-click on it to activate the pop-

up menu for that segment and select the first menu entry “Neuron/line #N…”. This will bring

up a dialog where the annotation text can be inserted.

(vi) to change the color of a specific curve segment, right-click on it to activate the pop-up menu

for that segment and select the “Color” entry.

(vii) to change the aspect (tube/skeleton) of the displayed curves, go to ‘Options’ > ‘Annotations’

> ‘Curves’ > ‘Aspect’ (Section 5.3.1).

(viii) to change the thickness (radius) of a specific curve segment (curve editing mode on), right-

click on it to activate the corresponding pop-up menu and select the “change nearest neuro-

segment radius” option.

(ix) to smooth a specific curve segment (curve editing mode on), right-click on it to activate the

corresponding pop-up menu and select the “deform the neuron-segment” option. This will

open a file dialog from which the value “resolution step” should be increased.

(x) to delete one or more neuron segments (curve editing mode on), right-click on the image

and select the “delete multiple neuron-segments by stroke” option from the pop-up menu.

Then hold the ‘SHIFT’ key and draw a contour with one mouse right-stroke around the

curve segments to be deleted. Release the ‘SHIFT’ key to delete only the curve segments

intersecting the contour drawn.

Nature Methods doi:10.1038/nbt.3767

(xi) to undo/redo, click on the and buttons, respectively.

(xii) use the TeraFly zoom-in and zoom-out functions combined with the annotation tools

previously described to trace neurites of different thickness at different resolution scales.

For instance, thin neurites can only be clearly seen (and thus traced) at the highest

resolution scale, whereas thick neurites can only be traced at the coarsest resolution scale

(they are too thick at the highest resolution scale), and so on.

(xiii) to save the curve segments and related annotations to a new .ano/.swc file, use the “Save

annotation as”() tool and select the output filename from the file dialog.

(xiv) to save the curve segments and related annotations to the already imported .ano/.swc file,

use the “Save annotations”() tool (it will overwrite the .swc file).

(xv) to load the curve segments and related annotation from an existing .ano/.swc file, use the

“Load annotations”() tool and select the input file from the file dialog. For instance, you

might want to open the neuron-traced.ano (already present in the test dataset) which

contains the manual tracing for the entire volume.

(xvi) to delete all the curve segments in the image, use the “Clear annotations” () tool.

5.4.3.3 Fast proofreading of automatic analysis outputs in large image volumes
(i) download and unzip the mouse.cerebellum.1GB.zip dataset (courtesy of F.S. Pavone, L.

Sacconi, L. Silvestri) from our test data repository and open it in TeraFly (Section 5.4.1).

(ii) adjust brightness/contrast as needed;

(iii) set the 3D viewer x-y-z dimensions (Section 5.3.4(ii)) to 300(x) x 300(y) x 300 (z). This will

correspond to the dimensions of a single image block during the block-by-block

proofreading of the entire volume.

(iv) from the TeraFly 3D object annotation toolbar displayed on the left (Section 5.3.9), use the

“Load annotations”() tool and select the somas-subvol.ano file that comes along with the

dataset. This will import the automatic cell counts and display the detected cells as 3D

markers.

(v) from TeraFly, click on the ‘Start’ button in the ‘Proofreading’ panel (Section 5.3.5). A dialog

will be shown (Section 5.3.5(iv)) from which to set proofreading session parameters (we

suggest block overlap of 20%, and the highest resolution scale). Then, press the ‘Start‘

button to enter the proofreading mode.

(vi) once the first block is loaded and displayed, use the QuickScan (Section 5.3.5(ii)) feature to

jump to the next nonempty block by scrolling the mouse wheel up and down on the block's

spinbox in the ‘Proofreading’ panel and then click and press Enter to load the block.

(vii) to quickly proofread the cell locations in the current block, use the tools in the TeraFly’s 3D

annotation toolbar as described in Section 5.4.3.1.

Nature Methods doi:10.1038/nbt.3767

(viii) to visualize the markers outside the displayed VOI and thus to avoid errors (i.e. false

positives and false negatives) in the VOI’s boundary regions, use the “Show/hide markers

around the displayed VOI” tool (). The markers outside the VOI will be displayed in white

color and cannot be modified nor deleted from this VOI (indeed they rely to the adjacent

VOIs). Alternatively, one can choose a higher block overlap (e.g. 40%) at step (v), but at the

cost of an increased number of blocks to proofread.

(ix) use the “Save annotations”() button in the TeraFly’s toolbar to save the corrected cells.

(x) to exit the proofreading mode, click on the ‘Stop’ button in the ‘Proofreading’ panel.

5.4.4 Automated analysis of the annotation results
We describe in this section the tools available in TeraFly to quantitatively analyze the manually

inputted or automatically generated 3D object annotations. Applications of these tools include (but

are not limited to) the quantitative comparison of “gold standard” annotations to computer (or

human) generated annotations or, further, the quantitative comparison of annotations

curated/proofread with different tools (Supplementary Note 6). Of note, comparing multiple

(𝑛 > 2) instances of image annotations, such as cell counts generated by multiple experts or

algorithms, would be computationally cumbersome without a look-up table designed for efficient

representation and search of such annotation data. In TeraFly, we use an octree data structure to

encode the 3D object coordinates that allows real-time search of the annotation data

(Supplementary Note 7).

5.4.4.1 Counting and/or labeling quasi-coincident 3D markers
Given a set 𝐴 of |𝐴| markers 𝑚𝑖, 𝑖 = 1, … , |𝐴|, with each marker 𝑚𝑖 associated to a 3D point

(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), and a tolerance distance 𝑑𝑚𝑎𝑥, we define two markers 𝑚𝑖 and 𝑚𝑗 as quasi-coincident

(𝑚𝑖 ≅𝑑𝑚𝑎𝑥
𝑚𝑗) if (and only if) their distance is less or equal to 𝑑𝑚𝑎𝑥, i.e.:

𝑚𝑖 ≅𝑑𝑚𝑎𝑥
𝑚𝑗 iff 𝑑(𝑚𝑖 , 𝑚𝑗) ≤ 𝑑𝑚𝑎𝑥

To simplify the notation, we will omit the subscript 𝑑𝑚𝑎𝑥 from the notation ‘≅𝑑𝑚𝑎𝑥
’, and thus

indicate two quasi-coincident markers 𝑚𝑖 and 𝑚𝑗 with 𝑚𝑖 ≅ 𝑚𝑗 .

In TeraFly, there are two options to calculate quasi-coincident 3D markers in a .apo file:

(i) from the TeraFly menu (Section 5.3.1), go to ‘Utilities’ > ‘Annotations’ > 'Markers' > 'Count

duplicates in the whole image' and insert the tolerance distance 𝑑𝑚𝑎𝑥. TeraFly will count the

quasi-coincident markers in the whole image currently opened.

(ii) from the TeraFly menu, go to ‘Utilities’ > ‘Annotations’ > 'Markers' > 'Label duplicates in .apo

file' and choose the input .apo file, the output .apo file, and the tolerance distance 𝑑𝑚𝑎𝑥.

TeraFly will label the quasi coincident markers with white color and save them (along with

the other markers) to the selected output file.

Nature Methods doi:10.1038/nbt.3767

5.4.4.2 Compare/diff multiple annotation files
Given the sets of markers 𝑀1, … , 𝑀𝑛 corresponding to 𝑛 distinct annotation files (.apo) generated

by 𝑛 distinct annotators (either humans or computer algorithms), we want to obtain the subset 𝐷

that contains only the markers where at least two annotators disagree. Thus, we want to calculate:

𝐷 = ⋃ 𝐷𝑖

𝑖

 𝑤ℎ𝑒𝑟𝑒 𝐷𝑖 = {𝑚 ∈ 𝑀𝑖 : ∃𝑗 ≠ 𝑗 : 𝑥 ∉ 𝑀𝑗}

The procedure to do this in TeraFly is described as follows:

(i) from the TeraFly menu (Section 5.3.1), go to ‘Utilities’ > ‘Annotations’ > 'Markers' > 'Diff of

multiple .apo files' and select any number of input .apo files and the output .apo file.

(ii) TeraFly will calculate 𝐷 = ⋃ 𝐷𝑖𝑖 and associate a unique color and name to the markers of

𝐷𝑖 . This way, it will still be possible to distinguish the various 𝐷𝑖 in 𝐷. The unique name is

extracted from the input .apo filename.

5.4.4.3 Calculate type I and type II errors from two annotation files
Given the sets of markers 𝐺 and 𝐹 corresponding to two distinct annotation files (.apo), where 𝐺 is

assumed as gold standard, we want to compare 𝐺 and 𝐹 and calculate the type I errors (false

positives (𝐹𝑃)) and type II errors (false negatives (𝐹𝑁)) in 𝐹. Following the definition of quasi

coincident markers of Section 5.4.4.1, we want to calculate:

𝐹𝑃 = {𝑥 ∈ 𝐹 : 𝑥 ≇ 𝑦, ∀𝑦 ∈ 𝐺}

𝐹𝑁 = {𝑦 ∈ 𝐺 : 𝑦 ≇ 𝑥, ∀𝑥 ∈ 𝐹}

The procedure to do this in TeraFly is described as follows:

(i) from the TeraFly menu (Section 5.3.1), go to ‘Utilities’ > ‘Annotations’ > 'Markers' > 'Count

type I/II errors from two .apo files' and select the input .apo files corresponding to 𝐺 and 𝐹

and the output .apo file.

(ii) TeraFly will ask to input the tolerance distance 𝑑𝑚𝑎𝑥 (Section 5.4.4.1) and, optionally, the

unique name identifier of the markers in 𝐹 that have to be compared with the markers in 𝐺.

If no name filter is provided, all the markers in 𝐹 will be compared to all the markers in 𝐺.

(iii) TeraFly will store in the output .apo file the two sets 𝐹𝑃 and 𝐹𝑁 with the false positive

markers labeled with red color and annotated as ‘false_positive’ and the false negative

markers labeled with blue color and annotated as ‘false_negative’.

Nature Methods doi:10.1038/nbt.3767

Supplementary Note 6. Annotation of Big-Image-Data

6.1 Introduction
TeraFly enabled us to annotate massive amount of biological images as we demonstrate in this

supplement in two real case scenarios (Section 6.2 and Section 6.3). Further, in Section 6.4 we

provide benchmark results and a quantitative comparison with other tools demonstrating that

TeraFly is both more efficient and more precise in the annotation of biological structures.

6.2 Quantification of Purkinje cells in a 110 GB mouse cerebellum
The first real test case was the precise quantification of Purkinje cells in a L7-GFP whole mouse

cerebellum. We ran the Brain cell finder tool (Frasconi, et al., 2014) to localize the Purkinje cells in

the 110.1 gigabyte image of the cerebellum of an L7-GFP mouse (Table 2.1). A total of 224,221

locations were detected and saved into a standard ASCII .vtk file to be imported into TeraFly

(Section 5.3.1). Then, an expert accurately proofread the cell locations in one quarter (26

gigabytes) of the image (Supplementary Video 3) using the TeraFly’s proofreading modality

(Section 5.3.5 and Section 5.4.3.3). This activity was divided into 16 sessions in which the expert

analyzed 1,274 image stacks of size 300(𝑥) × 300(𝑦) × 300(𝑧) with overlap of 20%. Remarkably,

the total time employed was only 10.1 hours, corresponding to about 24 minutes per gigabyte.

Assuming the obtained cell count as a gold standard, we then evaluated the performance of the

computerized analysis as follows. A predicted cell center 𝑐 was considered to be a true positive

(𝑇𝑃) if it matched a gold standard center �⃗� such that ||𝑐 − �⃗�|| = 0. Unmatched predictions were

counted as false positives (𝐹𝑃) and unmatched gold standard centers were counted as false

negatives (𝐹𝑁). To this end, we used the type I/II error counting functionality available in TeraFly

(Section 5.4.4.3). We finally computed precision (𝑃), recall (𝑅), and 𝐹1 measure as 𝑃 = 𝑇𝑃/(𝑇𝑃 +

𝐹𝑃), 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), and 𝐹1 =
2𝑃𝑅

𝑃+𝑅
 . The performance achieved was 𝐹1 = 0.98, which applied

to the entire image yields an estimate of 220, 800 Purkinje cells in the whole mouse cerebellum.

This result is consistent with previous estimates based on stereology (Woodruff-Pak, 2006;

Biamonte, et al., 2009) and is the most complete and precise map of its kind ever obtained.

6.3 Tracing of mammalian neurons
Currently TeraFly has been deployed in several applications to reconstruct (trace) very

complicated, large, 3D mammalian neuron morphology from images acquired using different

imaging modalities. While a comprehensive application study is beyond the scope of this technical

paper, here we describe an example to use TeraFly to annotate rat neuron image acquired using 2-

photon microscopy (courtesy of R. Tisen). The image had size 6,952(𝑥)×9,640(𝑦)×179(𝑧) voxels

and two color channels. The produced pyramid image consisted of four additional downsampled

images of size from 3,476(𝑥)×4,820(𝑦)×80(𝑧) to 434(𝑥)×602(𝑦)×11(𝑧). Starting from the lowest-

resolution image, an expert accurately traced the thickest neurites. Thinner neurites were traced

at the intermediate resolutions, whereas the thinnest ones, which were only partially or not visible

at the lowest resolutions, could only be traced at the highest resolutions (Supplementary Video

Nature Methods doi:10.1038/nbt.3767

6). With TeraFly visualization and multi-scale one mouse-stroke 3D curve creation (Section

5.4.3.2), the entire neuron could be mapped efficiently.

6.4 Benchmarks
From the same whole cerebellum image used in the experiment of Section 6.2, we extracted a 1 GB
nonempty nonproofread image of size 1020(𝑥) × 1020(𝑦) × 1020(𝑧) voxels and compared

TeraFly’s 3D-based proofreading (Section 5.3.5 and Section 5.4.3.3) with analogous annotation

functionalities offered by other image visualization softwares. Specifically, we compared TeraFly

to CellCounter/ImageJ (De Vos, 2010; Abrmoff, et al., 2004) and to MaMuT/BigDataViewer

(Tinevez & Pietzsch, 2015; Pietzsch, et al., 2015), which are two popular and freely available tools

for image visualization and annotation.

To obtain a rough estimate of the proofreading errors (type I and type II) made with the tools

considered, we designed a procedure that requires minimal human effort (at least two

proofreaders) and no prior definition of a gold standard annotation (Fig. 6.1). The procedure

consists of comparing the proofread cells generated with the different annotation tools and then

checking (and correcting) one by one the cells where at least two tools disagree. This potentially

yields an underestimation of the proofreading errors when all the tools make the same errors, but

still can be a valuable method to compare the proofreading performance of the different tools. In

our experiment, we employed three proofreaders: the first two who generated the proofread cells

with the tools under comparison, and the third one who carefully checked the cells where at least

two tools disagreed and marked the type I and type II errors. To implement this procedure, we

used the annotation analysis tools available in TeraFly (Section 5.4.4).

Fig. 6.1. The proposed procedure used to estimate the number of proofreading errors (false positives and false

negatives) made with 𝑁 proofreading tools and that uses 𝑀 + 1 proofreaders (𝑁 = 3 and 𝑀 = 2 in our experiment).

To generate the proofread cells for the various tools considered, we proceeded as follows. The 1

GB image was virtually divided into 64 blocks of size 300(𝑥) × 300(𝑦) × 300(𝑧) (overlap 60

voxels), that were proofread separately. Such subdivision was a good trade-off between the

number of blocks to proofread (the fewer, the faster the proofreading) and the number of cells in

Nature Methods doi:10.1038/nbt.3767

a single block (the higher, the more difficult and error prone is the proofreading). Then, for each of

the tools considered, the first proofreader accurately proofread the 64 blocks after having being

trained on additional 5 blocks. In CellCounter/ImageJ, which does not support big-image-data

visualization, the 64 image blocks were loaded and visualized one at the time after having been

previously extracted from the 1 GB image and saved to 64 image stacks. In TeraFly and

MaMuT/BigDataViewer, the entire 1 GB image could be loaded and visualized quickly, thanks to

their efficient big-image-data visualization. In TeraFly, we used the proofreading modality with the

same settings of the experiment of Section 6.2. In MaMuT/BigDataViewer, we iteratively moved

the viewer along 𝑥, 𝑦 and 𝑧 on the block to proofread.

The results of the proofreading time and type I/II error estimates are reported in Fig. 6.2. On

average, proofreading with TeraFly was 4x faster than with Cell Counter/ImageJ and 3x faster than

MaMuT/BigDataViewer (Fig. 6.1a). Moreover, TeraFly achieved an average precision �̅� = 0.996

whereas CellCounter/ImageJ and MaMuT/BigDataViewer achieved �̅� = 0.983 and �̅� = 0.989,

respectively. These results demonstrate that TeraFly was both considerably faster and more

precise than the other tools considered. In particular, TeraFly outperformed the other tools

especially on false positives, which were more difficult to detect using a 2D slice-by-slice

annotation approach (Supplementary Video 3-5).

Finally, we extracted another 64 mostly black image stacks that did not contain any cell. In our

case, these formed up to 50% of the whole mouse cerebellum image and thus they could slow down

proofreading significantly. This was the case of Cell Counter/ImageJ and MaMuT/BigDataViewer

but not of TeraFly (Fig. 6a), as we developed a fast previewing technique that boosted proofreading

in case of partially or totally empty stacks (Section 5.3.5).

 (a) (b)

Fig. 6.2. (a) Average time (mean ± s.d.) for proofreading of automated Purkinje cell counts in 64 nonempty 3D image
stacks, 64 empty image 3D stacks, and 128 mixed (64 nonempty and 64 empty) 3D image stacks extracted from the
L7-GFP 110 gigabyte whole mouse cerebellum image. (b) Proofreading errors (type I/false positives and type II/false
negatives) made on the 64 nonempty image stacks of (a).

Nature Methods doi:10.1038/nbt.3767

Supplementary Note 7. 3D object representation

To facilitate very efficient 3D annotation of biological structures (Section 5.4.3), and the automated

analysis of such 3D annotations (Section 5.4.4), in TeraFly we used the octree data structure

(Meagher, 1982) to encode the 3D objects at runtime. Specifically, we employ a hierarchical 8-ary

tree structure in which each node subdivides the space it represents into 8 equally-sized

nonoverlapping octants. The root of the octree corresponds to the whole image at the highest

resolution (Fig. 7.1(i)), and each 1 × 1 × 1 voxel-sized node stores the point belonging to one or

more 3D objects (Fig. 7.1(ii)). Let 𝑃 be the set of 3D points needed to represent all the 3D objects,

this structure has two advantages over a simpler, unordered array of points: (i) the memory

required for its representation is still on the order of |𝑃|, like for an array; and (ii) the time

complexity for finding the objects in a Volume of Interest (VOI) is 𝑂(log |𝑃|) (Meagher, 1982;

Narasimhan, et al., 2006), whereas for an array it is 𝑂(|𝑃|). Specifically, the VOI query time for 3D

objects was always negligible with the octree, and two orders of magnitude smaller than with the

array (Fig. 7.2).

Fig. 7.1. Octree-based representation of the annotated 3D objects. (i) First steps of the generation of an octree. (ii) A

neurite traced in a whole mouse brain image and the corresponding octree viewed from two different angles.

Nature Methods doi:10.1038/nbt.3767

Fig. 7.2. Average query time (mean ± s.d.) for 3D objects in a VOI using octree and array data structures to store 3D
objects coordinates. Each data point was obtained from 100 VOIs of size 256(𝑥) × 256(𝑦) × 256(𝑧) randomly taken
from a 1 terabyte image with an increasing number of uniformly distributed 3D markers.

Nature Methods doi:10.1038/nbt.3767

References
Abrmoff, M., Magalhes, P. & Ram, S., 2004. Image Processing with ImageJ. Biophotonics International, 11(7), p.

36–42.

Adobe Developers Association, 1992. TIFF revision 6.0 specification. [Online]

Available at: https://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

Amat, F. et al., 2015. Efficient processing and analysis of large-scale light-sheet microscopy data. Nature

Protocols, 10(11), pp. 1679-1696.

Biamonte, F. et al., 2009. Interactions between neuroactive steroids and reelin haploinsufficiency in Purkinje

cell survival. Neurobiology of Disease, 36(1), p. 103–115.

Carpenter, A. et al., 2006. Cellprofiler: image analysis software for identifying and quantifying cell phenotypes.

Genome Biology, 7(10), p. R100.

Chung, K. & Deisseroth, K., 2013. CLARITY for mapping the nervous system. Nature Methods, 10(6), p. 508–513.

Conrad, C. et al., 2011. Micropilot: automation of fluorescence microscopy-based imaging for systems biology.

Nature Methods, 8(3), pp. 246-249.

De Vos, K., 2010. Cell Counter. [Online]

Available at: http://rsbweb.nih.gov/ij/plugins/cell-counter.html

Frasconi, P. et al., 2014. Large-scale automated identification of mouse brain cells in confocal light sheet

microscopy images. Bioinformatics, 30(17), p. i587–i593.

Fukunaga, K. & Hostetler, L. D., 1975. The estimation of the gradient of a density function, with applications in

pattern recognition.. Information Theory, IEEE Transactions on, 21(1), pp. 32-40.

Jeong, W. K. et al., 2010. SSECRETT and neurotrace: Interactive visualization and analysis tools for large-scale

neuroscience data sets. IEEE Comput. Graph. Appl., 30(3), pp. 58-70.

Lau, C. et al., 2008. Exploration and visualization of gene expression with neuroanatomy in the adult mouse

brain. BMC Bioinformatics, 9(1), 153. BMC Bioinformatics, 9(1), p. 153.

Long, F. et al., 2009. A 3D digital atlas of C. elegans and its application to single-cell analyses. Nature Methods,

6(9), pp. 667-672.

Long, F., Zhou, J. & Peng, H., 2012. Visualization and analysis of 3D microscopic images. PLoS Computational

Biology, 8(6), p. e1002519.

Meagher, D., 1982. Geometric modeling using octree encoding. Computer Graphics and Image Processing,

19(2), p. 129–147.

Murphy, R. F., 2012. Cellorganizer: Image-derived models of subcellular organization and protein distribution.

In: Computational Methods in Cell Biology. s.l.:A.R. Asthagiri and A. P. Arkin, pp. 179-193.

Narasimhan, S., Mundani, R.-P. & Bungartz, H.-J., 2006. An octree and a graph-based approach to support

location aware navigation services. s.l., s.n., p. 24–30.

Peng, H., 2008. Bioimage informatics: a new area of engineering biology. Bioinformatics, 24(17), pp. 1827-1836.

Nature Methods doi:10.1038/nbt.3767

Peng, H. et al., 2010. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological

image data sets. Nat Biotech,, 8(4), p. 246–249..

Peng, H. et al., 2014. Virtual Finger boosts three-dimensional imaging and microsurgery as well as terabyte

volume image visualization and analysis. Nature Communications, Volume 5.

Pietzsch, T. et al., 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), p.

676–682.

Pietzsch, T., Preibisch, S., Tomancak, P. & Saalfeld, S., 2012. ImgLib2 - generic image processing in Java.

Bioinformatics, 28(22), p. 3009–3011.

Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P., 2015. BigDataViewer: visualization and processing for

large image data. Nature Methods, 12(6), pp. 481-483.

Pologruto, T., Sabatini, B. & Svoboda, K., 2003. Scanimage: Flexible software for operating laser scanning

microscopes. BioMedical Engineering OnLine, 2(1), p. 13.

Royer, L. A. et al., 2015. ClearVolume: open-source live 3D visualization for light-sheet microscopy. Nature

Methods, 12(6), pp. 480-481.

Saalfeld, S., Cardona, A., Hartenstein, V. & Tomancak, P., 2009. CATMAID: collaborative annotation toolkit for

massive amounts of image data. Bioinformatics, 25(1984–1986).

Silvestri, L., Bria, A., Sacconi, L. & Iannello, G., 2012. Confocal light sheet microscopy: micron-scale

neuroanatomy of the entire mouse brain. Optic Express, 20(18), p. 20582–20598.

Sommer, C., Straehle, C., Kothe, U. & Hamprecht, F., 2011. Ilastik: Interactive learning and segmentation

toolkit. s.l., s.n., pp. 230-233.

Stuurman, N. et al., 2010. Computer Control of Microscopes using μManager. In: Current protocols in molecular

biology. s.l.:John Wiley & Sons, Inc., Hoboken, NJ, USA.

The HDF Group, 2014. Hierarchical Data Format, version 5. [Online]

Available at: http://www.hdfgroup.org/HDF5

Tinevez, J.-Y. & Pietzsch, T., 2015. MaMuT: A Fiji plugin for the annotation of massive, multi-view data. [Online]

Available at: http://fiji.sc/MaMuT

Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K., 2014. Advanced clarity for rapid and high-resolution imaging of

intact tissues. Nature Protocols, 7(9), p. 1682–1697.

Walter, T. et al., 2010. Visualization of image data from cells to organisms. Nature Methods, 7(3), pp. S26-S41.

Woodruff-Pak, D., 2006. Stereological estimation of Purkinje neuron number in C57BL/6 mice and its relation to

associative learning. Neuroscience, 141(1), p. 233–243.

Nature Methods doi:10.1038/nbt.3767

	nmeth.3767.pdf
	nmeth.3767-S1

