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T
he registration, segmenta-
tion, and annotation of mi-
croscopy images and respec-
tive biological objects (e.g., 
cells) are distinct challenges 

often encountered in bioimage informat-
ics. Here we present several studies in 
widely used model systems of the fruit fly, 
zebrafish, and C. elegans to demonstrate 
how registration methods have been em-
ployed to align three-dimensional (3-D) 
brain images at a very large scale and to 
solve challenging segmentation and an-
notation problems for 3-D cellular images. Specifically, we consider 
two types of registration between images and models: image-to-im-
age registration and model-to-image registration, where a model 
consists of a description of the geometrical shape or the spatial lay-
out of biological objects in the respective images. 

Introduction
The registration of objects or patterns (e.g., cells with a globular 
shape, gene expression patterns, and highly irregular arborization 
patterns of neurons) is a commonly used technique in biological 
and medical data analysis. Generally speaking, registration is a 
process to map one image, object, or pattern to another (often 

obtained from different sensors, times, 
subjects, etc.) so that they can be com-
pared, analyzed, or visualized directly 
within the same coordinate system. A 
spatial coordinate system is often con-
sidered. Along with the development of 
time-lapse light microscopy, the regis-
tration of a time series of images is also 
common and deemed important for 
many developmental biology studies. As 
an enabling technique in many applica-
tions such as building digital atlases, 
assessing the invariance (stereotypy) of 

patterns, profiling neuron connectivity, and studying the variation 
of cell populations, registration is essential in large-scale bioimage 
visualization, analysis, data mining, and informatics fields [1]–[3]. 

Segmentation and annotation of microscopy images and the 
respective biological objects are two challenging topics in bioim-
age analysis and informatics [1], [4], [5]. Segmentation refers to 
partitioning an image into multiple disjointed salient image 
regions, within each of which the image pixels share certain 
common characteristics. For 3-D cellular or brain images, the 
partitioned regions often represent interesting cells or compart-
ments. In many cases, this partitioning process is realized by 
assigning a label to a group of pixels or by delineating the 
boundary of interesting objects and patterns. In contrast to seg-
mentation, annotation is more closely related to the recognition 
of patterns or objects. Annotation often associates specific 
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semantic properties such as the identities or categories to 
objects or patterns. Segmentation and annotation are critical to 
address important biological questions (e.g., quantification of 
gene expression patterns, generation of the ontology databases, 
and digital atlases of model animals). 

From Image-to-Image Registration to  
Model-to-Image Registration 
Registration is often needed to compare, fuse, or quantify 
objects or patterns in images. In many cases, registration is also 
required to map images to models and vice versa. In these latter 
situations, a model often consists of geometric shape descrip-
tion of the anatomy or spatial layout of biological objects in the 
respective images. 

Image-to-Image Registration
Many system biology studies rely on aligning images of gene 
expressions in different cell populations [6]–[8] or specimens that 
correspond to different developmental times [9]. In several recent 
brain mapping projects of the Drosophila (fruit fly), it became crit-
ical to align a number of 3-D confocal images of the insect’s 
brains. Each fly had been genetically engineered to express fluo-
rescent proteins in a specific population of neurons, which were 
aligned to a standard space so that they could be compared with 
each other [Figure 1(a)]. The FlyCircuit project in Taiwan [10] and 
the FlyLight project at the Janelia Research Campus of the How-
ard Hughes Medical Institute [11] each generated tens of thou-
sands of 3-D fruit fly brain image stacks represented some of the 
biggest neuroscience efforts to date to understand the brain’s 
structure. In each of these brains, some neuron populations are 
labeled using genetic methods. In both projects, registration of 
brain images is crucial. Registering images that correspond to the 
same population is useful to quantify the intrapopulation variabil-
ity of neurons, which can further help define the meaningful neu-
ron types. Registering images that correspond to different 
populations is useful to quantify the spatial proximity of neurons 
and thus helps estimate the putative connectivity of neurons. Sim-
ilarly interesting results for the zebrafish (Danio rerio) were also 
reported recently [3], [4], [12].

Sophisticated volumetric image registration methods have 
been developed in the biomedical imaging field. Many methods, 
such as mutual information registration [13], spline-based elastic 
registration [14], invariant moment feature-based registration 
[15], and congealing registration [16], [17], have been widely used 
and extended to align molecular and cellular images. However, 
since many of them were originally designed for magnetic reso-
nance imaging and computer tomography data, in many cases it 
remains challenging to use them easily and effectively in aligning 
the microscopy images that have larger-scale and fuzzier contents. 

Two major challenges in biological image registration are the 
scale (in terms of the number and size of images) and variation of 
data (morphology or shape of patterns, image intensity, and noise 
level). For the first challenge, when the number of 3-D image 
stacks of brains increases to the order of tens of thousands and 
each image stack normally has the dimensions of 1,024 voxels (X) 

#  1,024 voxels (Y) #  a few hundreds of voxels (Z), it will become 
exceedingly expensive to ask human annotators to supply even 
some simple prior knowledge of the data. The huge amount of 
image stacks requires that a successful registration scheme be 
highly automated, robust, and computationally efficient. These 
requirements limit the immediate applicability of many intensity-
based registration methods in biomedical imaging field. 

The second challenge is that the acquired microscopy image 
data not uncommonly display substantial variation of the appear-
ance of the to-be-registered patterns. For instance, due to variable 
tissue labeling, light scattering, mismatching of reflective indexes 
of media along the light path, and many other issues in the auto-
mated image acquisition process, confocal microscopy data can 
exhibit a low signal-to-noise ratio. As in the fruit fly brain projects, 
an image normally comes with a neuropil staining that indicates 
the shape of the brain. Many times it is hard to threshold the neu-
ropil image to segment the brain region from the image back-
ground. Therefore, it is often impractical to adopt boundary 
registration methods as used in the medical imaging field (see [15] 
for an example). In addition, complicated and varying shapes can 
arise from the flexible nature of specimens along with the sample 
preparation (e.g., tissue fixation). All these factors pose challenges 
to the image registration problem.

Many efforts were carried out to tackle these challenges. In 
an early effort of the FlyCircuit project, a simple affine transfor-
mation was used to align fruit fly brain images [10]. Unfortu-
nately, the affine transformation is often not flexible enough to 
handle nonrigid deformations in images. In [18], 257 fruit fly 
brains are progressively registered using a method based on 
mutual information [19]. Such a method was also combined 
with multithreaded programming to accelerate the computa-
tion. However, nonsalient feature points used in registering dif-
ferent images can affect the accuracy of such a scheme. 

BrainAligner [20] and ViBE-Z [3] are two programs developed 
recently to register sophisticated image patterns. ViBE-Z focuses 
on the registration of zebrafish brains. In such an application case, 
the image patterns consist of mainly line- and planelike structures 
[3]. ViBE-Z utilizes this feature by employing a trainable, rotation-
invariant landmark detector. With 14 detected landmarks, a thin-
plate spline transformation was used to perform a coarse but also 
elastic registration. Then, an intensity-based registration was used 
to realize a fine-scale elastic registration. In addition, a graph-
based solver was used to determine the optimal deformation field 
in the fine elastic registration. This solver was shown to be efficient 
and less sensitive to local minima than commonly used gradient-
descent methods.

We developed BrainAligner to detect the corresponding land-
marks of any pair of images based on using a committee-machine 
algorithm [Figure 1(c)] to aggregate the feature matching results 
of a series of independent image feature analysis methods. In this 
way, the effect of pattern variation can be mitigated. The matched 
pairs of landmarks are further pruned using both the random sam-
ple consensus (RANSAC) algorithm [21] and tetrahedron pruning. 
RANSAC ensures all the corresponding landmark pairs form a 
globally consistent transform, which is the affine transform in our 
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Cutting Planes
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to the Backbone
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(a)

(b) (c)

[Fig2]  Model-to-image registration and its use in standardization of articulated shapes that are often seen in microscopy images of  
model animals. This process is done via detecting the principal skeletons of these shapes followed by unbending the structures using 
a smooth warp. (a) Detecting the center “backbone” curve of a C. elegans image stack (top left) and straightening this image by 
restacking resampled image data (bottom) of all cross-sectional planes orthogonal to the backbone curve (top right). (b) Registering 
an initial model (green) of a fruit fly larval nervous system to two different confocal images of this animal. The red color indicates the 
final detected principal skeletons (the control nodes are marked as small circles). Note that the same model was used in both 
examples to generate the correct results. (c) Registering an initial model (green) of a fruit fly adult ventral nerve cord to a confocal 
image of this animal. The red color indicates the final deformed principal skeleton (the control nodes are marked as small circles).

case. Tetrahedron pruning eliminates the cases of local self-inter-
section of corresponding landmark pairs and thus reduces the like-
lihood of occurrence of nonsmooth transform during registration. 
In addition, a hierarchical interpolation scheme for the 3-D thin-
plate spline is employed in BrainAligner to quickly calculate the 
deformation field. Such an interpolation method considerably 
reduces both computation complexity and memory consumption 
of thin-plate spline warping. Together these components make 
BrainAligner robust to imperfect images (e.g., images of brains 
that have been partially damaged during sample preparation or 
images with fuzzy boundaries) and suitable for high-throughput 
processing. BrainAligner has aided a number of studies in fruit fly 
brain research by mapping neuron populations visualized using 
various genetic methods to a standard brain atlas model ([11], 
[20], [22]). This results in complete coverage of the fruit fly brain 
and a mesoscale connectome of the brain of the animal [23].

Model-to-Image Registration

Principal Skeleton Models
Biological patterns often have highly curved, articulated, or 
branched structures. For instance, the bodies of C. elegans 
[Figure 2(a)] and zebrafish are usually curved. The fruit fly larval 
nervous system and ventral nerve cord of adult fruit fly have artic-
ulated shapes [Figure 2(b) and (c)]. The curved structure can be 
modeled as a lower-dimensional manifold pattern. A global affine 
transform is not suitable to globally register images of these pat-
terns. Without being able to globally align these images, more 
detailed registration at local image regions will become impossible.

When the biological objects have an articulation or an embed-
ded manifold, such patterns should be first globally standardized 
prior to the image-to-image registration (following the procedure 
discussed in the section “Image-to-Image Registration.”) 
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The standardization refers to unfolding the embedding-manifold 
structures or globally aligning the articulated components of 
objects so that they possess similar scales, positions, and directions.

 To standardize a shape in the image, we first explicitly 
model the curved or articulated shape. A principal skeleton 
model [24] is suitable for this goal. The principal skeleton is 
defined by a set of connected polylines with intrinsic shape con-
straints embedded (Figure 2). For different shapes, different 
principal skeleton models should be created. The principal skel-
eton model of a shape should correspond to the simplest skele-
ton that is complicated enough to capture the major structure 
and major deformation of this shape. In the simplest case, a prin-
cipal skeleton model consists of only a polyline without any 
branch, which is sufficient to capture the smoothly curved shapes 
in C. elegans [Figure 2(a)] or zebrafish. In a more complicated 
case, a connected multipolyline model is used to define the princi-
pal skeleton. This fits well the cases of fruit fly larval nervous sys-
tem and adult ventral nerve cord [Figure 2(b) and (c)] . 

A principal skeleton model can be deformed to best register to 
the image content. This skeleton model, however, may not be eas-
ily produced using many approaches such as [25]–[30]. For 
instance, when the boundary of the animal’s shape is not available 
[Figure 2(a)], a skeleton cannot be derived directly from the shape 
of the animal. Such cases are not uncommon in microscopy 
images. To solve this problem, we produced an optimized principal 
skeleton model for an image by iteratively mapping a predefined 
principal skeleton onto the image [24], [31]. Specifically, one can 
progressively update the control points in the principal skeleton 
while preserving the topology of the linkage between control 
points. To drive the deformation process, we defined a cost func-
tion to optimize two competing terms: one external force called 
image force and one internal force called model force. The image 
force is designed to push the principal skeleton to span as broadly 
as possible to cover the entire image pattern. This is realized by 
first generating the Voronoi partition using all control points and 
then minimizing the distance between each control point and the 
center of mass of its corresponding Voronoi region. The model 
force is designed based on the shape prior defined by the principal 
skeleton. Such a force is then minimized to attain the shortest 
overall length and the greatest smoothness of the principal skele-
ton. Figure 2 shows examples in which the initial model can 
deform to best register to images.

For multiple image patterns that have articulated structures, 
once their principal skeleton models have been generated, a 
thin-plate spline can be employed to warp these image patterns 
to a common coordinate system [24]. Such a method has been 
successfully applied to C. elegans, a fruit fly larval nervous sys-
tem, and ventral nerve cord image data to perform more accu-
rate global registration. Then local alignment methods such as 
BrainAligner can be used more effectively to generate high-res-
olution local registration.

Spatial Layout Atlas Models
In some cases, the model may need to be much more compli-
cated than the aforementioned principal skeleton. One piece of 

essential information is the complex 3-D spatial layout of 
objects. In addition, the model may also incorporate the objects’ 
identities or some statistical information such as cell shape, 
size, and position variation, etc. [32]. With a complex version of 
the model, the model-to-image registration can be further 
extended to solve segmentation and annotation problems.

Here we restrict our discussion on C. elegans cell segmenta-
tion and annotation. For neuron- and whole-organism-level seg-
mentation and annotation, we refer interested readers to [29], 
[33], and [34]. C. elegans is a model animal for a wide range of 
biological studies, from gene expression to brain function and 
even animal behavior [35]. This animal has an invariant number 
of cells, which also have invariant lineages during development. 
For the postembryonic C. elegans, a number of confocal images 
[Figure 3(a)] were segmented [32]. The results were further 
assembled as a 3-D digital atlas [Figure 3(b)] to describe the layout 
of cells at the single cell resolution [32]. This digital atlas can 
either be visualized in terms of a point-cloud [similar to Figure 
3(a)] or a “wiring” graph of cells’ relative locations [Figure 3(b)] in 
3-D. The atlas was then used as a model to guide the recognition 
of cells in newly scanned 3-D image stacks of this animal. 

Intuitively, recognition of these C. elegans cells could be 
achieved by first segmenting the cells in 3-D, followed by finding the 
correspondence between segmented cells in an image and the 
already standardized cells in the atlas model. Once cells have been 
segmented and recognized, useful information of cells, such as the 
expression level of specifically targeted cells, can be read out at these 
identified cellular locations. This routine was first developed in [36]. 
In the cell segmentation step, an optimized 3-D watershed algo-
rithm was used. In the recognition step, since the relative locations 
of most cells are conserved from animal to animal, a graph-match-
ing formulation of cell locations from the segmented cells to those 
recorded in the atlas was used. Both steps unavoidably had some 
errors. The biggest problem was that the information in the atlas 
(e.g., the number of cells, the variability of relative locations of cells) 
was not employed to help improve cell segmentation, which would 
also enhance the graph matching based recognition. In [37], the 
problem of over- and undersegmentation was alleviated by perform-
ing recognition on an abundant pool of segmentation hypotheses. 

Instead of separating cell segmentation and recognition as two 
isolated processes, an alternative method is to perform segmenta-
tion and recognition in a simultaneous way with prior knowledge 
considered in both steps [38]. In short, this strategy was realized 
by “registering” the atlas to the image directly. The atlas itself in 
this case is a complex model that encodes both the identities and 
relative locations of all cells. The registration process is defined as 
deforming the 3-D locations of all cells in the model to best fit the 
cells in the image while keeping their relative locations. The cell 
segmentation in this case is implicitly realized via assigning a dis-
tinct group of image voxels to each cell. 

To illustrate this idea, one may begin with a simplified case 
where there is only one cell in both the atlas and image. In this 
case, the best fit is apparently to move the cell’s location to the 
center of mass of the image [Figure 3(c)]. In a slightly more com-
plicated case where there are two cells (called u and v for 
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[Fig3]  Three-dimensional segmentation and recognition of C. elegans cells. (a) Shown in the upper image is a 3-D confocal image stack of  
C. elegans, where different colors indicate different fluorescent labeling of cells;  (a) (bottom) shows the point cloud representation of the 
3-D segmentation result of this image stack, where different colors indicate different cells. The 3-D atlas is also often represented as a point 
cloud and visualized similar to the bottom of this picture. (b) A portion of the directed acyclic representation of the anterior-posterior 
location relationship in the 3-D atlas of C. elegans. The arrow from a cell U to a cell V means U’s location is always anterior of V in the atlas. 
Depicted in the middle of each circle (graph node) is the name of this cell. Similar left–right and dorsal–ventral graphs can be produced 
based on the atlas as well. (c) A schematic illustration of an image where there is only one cell and the optimal 3-D location of this cell 
should be the center of mass of image voxels. (d) A schematic illustration of an image where there are only two cells and the optimal 3-D 
locations of these two cells should be the centers of mass of the Vonoroi regions. (e) Results of simultaneous-segmentation and recognition 
of C. elegans via deforming an atlas model of all cells to best register to the 3-D image, and a comparison with the 3-D watershed 
segmentation, which has both under- and oversegmentation at different regions. (Image taken from [38] and used with permission.) For 
more details on the C. elegans atlas and the algorithm, see [35] and [38], respectively.
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convenience) in the atlas and image [Figure 3(d)] and assuming 
the cell u is always in the left of the cell v. In this case, we would 
partition the image into two portions, each of which would be 
assigned to one cell, and move the cell’s location to the center of 
mass of the respective partition. Finally, the constraint for cells’ 
relative positions can be guaranteed by switching u and v if such a 
constraint is violated. 

Biologically, this approach is suitable for the C. elegans cell rec-
ognition problem because the number of cells of the worm is a con-
stant and the relative spatial locations of individual cells are highly 
constrained [35]. We formulated this approach into an algorithm 
called simultaneous recognition and-segmentation of cells [38]. Its 
optimization process consists of two iterative steps: 1) atlas-guided 
voxel classification and 2) voxel-classification-guided atlas deforma-
tion. A more detailed description is given in [38]. Interestingly, to 
make the algorithm more robust and efficient, several additional 
factors have also been considered [38]. First, because C. elegans is 
much more elongated along its anterior–posterior axis than the 
dorsal–ventral and left–right axes, the algorithm allows more flexi-
ble deformation of cells’ locations along the anterior–posterior axis 
than the two other axes. Second, a “temperature”-modulated deter-
ministic annealing optimization [39]–[41] was used to tackle the 
optimization problem by constraining the fuzziness of the classifi-
cation probabilities. Thanks to this annealing method, simultane-
ous segmentation and recognition can even handle 180° flipped 
images [38]. Finally, to cope with the challenge of (usually) having 
an enormous amount of image voxels in a 3-D image, we downs-
ampled the image before entering the iteration step. We also con-
sidered only sufficiently bright image pixels in the actual 
computation of likelihood and image partitioning (typically, only 
pixels with intensities greater than the average intensity of the 
image are included in the calculation). In the simultaneous seg-
mentation and recognition result, the partition of the foreground 
image naturally translates to the segmented regions of cells. 

Simultaneous segmentation and recognition has been applied 
to recognizing a number of cell types in C. elegans, including body 
wall muscle cells, intestinal cells, neurons, etc. It can recognize 
these cells reliably, even if the initial atlas of cells has a different 
orientation from the test image [38]. Simultaneous segmentation 
and recognition avoids many of the over- and undersegmentation 
problems [Figure 3(e)], compared to some widely used cell seg-
mentation methods such as the watershed based [36], [42], graph-
cut based [43], level-set based [44], and many other methods as 
mentioned in a recent review paper [5] and the many insight seg-
mentation and registration toolkit methods wrapped up in the 
FARSIGHT project (see [45]). Such a feature indicates that this 
model-to-image registration-based approach can be used to solve 
challenging image segmentation in some situations.

Discussion and Conclusions 
In this article, we introduced three cases of registration between 3-D 
images and models. We showed that registration-based approaches 
are useful for large-scale image alignment, as well as for the seg-
mentation and annotation of 3-D cellular microscopy images. It is 
noteworthy that the generalization of registration-based approach 

can be further applied to other bioimage analysis problems. These 
analyzed results could be further visualized or annotated by widely 
used manual tools such as Vaa3D (http://vaa3d.org) [46] and CAT-
MAID [47]. 

The model-to-image registration can be combined with image-
to-image registration in a pipeline, thus the articulated objects in a 
bioimage can be meaningfully aligned. Model-to-image registra-
tion can also be combined with image tracking, a whole field of 
methods not discussed in this article, to analyze two-dimensional 
or 3-D video-based animal motion or development (e.g., C. elegans 
or zebrafish kinetic motion analysis). Another promising direction 
is to integrate all the steps of animal tracking, shape standardiza-
tion, cell segmentation, and recognition with microscope hardware 
control to build an “intelligent” system that can simultaneously 
perturb cells and screen corresponding behaviors in vivo. 

Despite the several examples we showed, we also found several 
challenges in registration methods and applications. There is also a 
lot of room to improve the related algorithms. For example, cell rec-
ognition and segmentation, despite the exploration of relative spatial 
location information and position variation statistics, still lacks an 
efficient method to use the cell shape and size priors embedded in 
the atlas. Sophisticated machine-learning techniques, such as 
supervised learning, can play interesting roles in its further develop-
ment. Not limited to registration, another key factor of consider-
ation in many bioimage analysis applications is whether or not the 
prior knowledge can be effectively modeled and utilized. We hope 
this article can inspire more research into signal processing, pattern 
recognition, and machine learning for robust bioimage analysis.
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