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ABSTRACT

Motivation: Tracing of neuron morphology is an essential technique in

computational neuroscience. However, despite a number of existing

methods, few open-source techniques are completely or sufficiently

automated and at the same time are able to generate robust results for

real 3D microscopy images.

Results: We developed all-path-pruning 2.0 (APP2) for 3D neuron

tracing. The most important idea is to prune an initial reconstruction

tree of a neuron’s morphology using a long-segment-first hierarchical

procedure instead of the original termini-first-search process in APP.

To further enhance the robustness of APP2, we compute the distance

transform of all image voxels directly for a gray-scale image, without

the need to binarize the image before invoking the conventional dis-

tance transform. We also design a fast-marching algorithm-based

method to compute the initial reconstruction trees without pre-com-

puting a large graph. This method allows us to trace large images. We

bench-tested APP2 on �700 3D microscopic images and found that

APP2 can generate more satisfactory results in most cases than sev-

eral previous methods.

Availability: The software has been implemented as an open-source

Vaa3D plugin. The source code is available in the Vaa3D code reposi-

tory http://vaa3d.org.

Contact: hanchuanp@alleninstitute.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

3D reconstruction of complex neuron morphology from light-

microscopic images is an important technique for computational

neuroscience. It has received considerable attention in recent

years, such as in the DIADEM competition (Brown et al.,

2011; Gillette et al., 2011) that involved �100 teams worldwide

and many related studies (e.g. Al-Kofahi et al., 2002;

Choromanska et al., 2012; Cohen et al., 2011; Donohue et al.,

2011; Lu et al., 2009; Meijering et al., 2004, 2010;

Narayanaswamy et al., 2011; Narro et al., 2007; Peng et al.,

2010a, 2010b, 2011; Vallotton et al., 2007; Wang et al., 2011;

Xiong et al., 2006; Zhang et al., 2007a,b; Zhao et al., 2011).

However, despite a number of developed algorithms of neuron

reconstruction (also called ‘neuron tracing’), it remains a signifi-

cant problem how to trace neurons in a robust and precise way

from real 3D microscopic images.

Automation of neuron tracing for complex neuron morph-

ology and low quality image data has been previously discussed

in the All-Path-Pruning (APP) method (Peng et al., 2011). The

key idea of APP is to generate an initial reconstruction that

covers all the potential signal of a neuron in a 3D image, fol-

lowed by a linear-time pruning of unneeded branches until a least

compact representation is produced while the coverage of all

neuronal signal is maintained.
In this study, we present a new version of the APP algorithm,

called APP2 (Fig. 1), with the goal to generate a more accurate

and robust reconstruction within a shorter amount of time.

To attain this goal, we develop new algorithms in three

components:

(i) A method to generate distance transform of the neuron

signal from gray-scale image directly, without threshold-

ing-based binarization (Fig. 1B);

(ii) A method to generate the initial reconstruction (Fig. 1C);
(iii) A hierarchical pruning method to produce the final recon-

struction (Fig. 1D).

Compared with APP, all three components of APP2 are novel,

especially the pruning process for where APP2 is much more

efficient than APP. The distance-transform step and the initial

reconstruction step of APP2 are useful enhancement and can

also be used for APP essentially. Therefore, to evaluate the effi-

ciency of our algorithms, we compared the tracing results with

the gray-weighted distance transform (GWDT) or without

GWDT. We also compared the result of APP2 and APP meth-

ods. To examine the robustness of our algorithm, we used signal

deletion tests. We also tested our algorithms on many datasets

from different sources, including a DIADEM dataset and many

other more challenging datasets of fruit fly and dragonfly neu-

rons that have heavy noise.

In our experiments, we have found that in most cases, APP2 is

able to produce a reasonable tracing result within a short amount

of time, usually within seconds for a large 3D image. Our new

results are often better than those generated using several other

existing competitive methods.

*To whom correspondence should be addressed.
yThe authors wish it to be known that, in their opinion, the first two
authors should be regarded as joint First Authors.
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2 METHODS

2.1 Overview of APP2

In this article, we focus on neuron tracing for 3D light-microscopic

images (often confocal or multi-photon laser scanning microscopic

images). Taking a 3D gray-scale image as the input, a neuron-tracing

method produces the digital representation of the morphology of the

neuron(s) in this image. Tracing multiple neurons that potentially overlap

in an image has been found to be fundamentally ill-posed and might be

ultimately tackled using biological tissue labeling methods, such as

dBrainbow (Hampel et al., 2011). In the latter case, the problem reduces

to tracing of a group of single-channel images, each of which contains a

single neuron. Therefore, here we discuss only how to reconstruct a single

neuron’s morphology from an image.

In many previous studies, the 3D reconstructed morphology of a

neuron is described using a tree graph G. G has a root node that corres-

ponds to the seed location for reconstruction, which in many cases also

corresponds to the soma of a neuron. G may also contain many leaf

nodes, branching nodes and other inter-nodes.

An important idea in the recent APP method (Peng et al., 2011) is

to first generate an over-reconstruction from the image to capture all

possible signal/pixels of a neuron and then use an optimal pruning

procedure to remove the majority of spurs in this over-reconstruction

to produce a final succinct representation of the neuron, with a max-

imum coverage of all neuron signal. The pruning process starts from

leaf nodes of the over-reconstruction. A ‘coverage’ test is iteratively

conducted to check whether any of them have been ‘covered’ (i.e. has

significant signal overlap) by other nodes. The nodes that are covered

by others will be removed; otherwise they will be kept. A similar

process is also applied to all internodes. The entire procedure is re-

peated until a most succinct representation that maximizes the signal

coverage has been produced. Although the termini-first-search ap-

proach in APP is effective, it needs multiple iterations, which could

still be time-consuming, even the algorithm itself has linear-time com-

plexity to the number of reconstruction nodes. In addition, APP does

not consider how to best preprocess an input image to optimize the

tracing result.

APP2 follows the basic framework of APP. However, it enhances

the key components of the original method. In short, APP2 consists

of three steps in Figure 1B, C and D: (i) GWDT (Section 2.3);

(ii) construction of an initial, over-reconstruction of the traced

neuron (Section 2.4); and (iii) pruning of the over-reconstruction in

hierarchical order (Section 2.5). The detail of APP2 is described as

follows.

2.2 Fast marching method

The fast marching (FM) algorithm (Sethian et al., 1999), which is essen-

tially a region-growing scheme, plays an important role in APP2. Both

GWDT and initial neuron reconstruction are implemented in the FM

framework.

In FM, we model an image as a graph, where each graph vertex cor-

responds to an image pixel (voxel). There is an edge between each pair of

immediately neighboring pixel vertices. FM grows the image graph from

a set of predefined seed vertices to all remaining image pixel vertices in a

distance-increasing order. All image pixels are divided into three groups,

labeled as ALIVE, TRIAL and FAR.

FM has two main steps: initialization and recursion. First, all the seed

vertices are initialized to be ALIVE; the neighbors of seeds are initialized

as TRIAL; and the rest are set as FAR. Then, from the set of TRIAL

vertices, we will extract one vertex x, which has the minimum distance

value to the ALIVE set. The extracted vertex x is then converted from

TRIAL to ALIVE. For any non-ALIVE neighbor y of x, we set it to

TRIAL if it is FAR. The distance function of y is updated as (also see

below for concrete definitions).

d yð Þ ¼ min d yð Þ, d xð Þ þ e x, yð Þ
� �

where e(x,y) is the distance between vertex x and vertex y [see below for

definition of e(x,y)]. FM recursively extracts the vertex that has the min-

imum distance from the TRIAL set until it becomes empty.

An important implementation trick of FM is to maintain TRIAL

vertices in a Fibonacci heap so that the required minima can be obtained

efficiently.

2.3 GWDT: gray-weighted image distance transform

To enhance the step of producing an initial neuron reconstruction, in

APP2, we apply the distance transform (DT) to the input image. In

case of an image region that has relatively ‘flat’ intensity, DT is able to

create a gradient of image intensity: close to the center of this region, the

image intensity is large, and close to the boundary, the intensity is small.

We call this ICDB principle, which stands for ‘increase the intensity in the

center and decrease the intensity near boundary’. It would help to build a

high quality initial reconstruction by forcing the shortest path to go

through the skeleton of the neuron.

However, the conventional distance transform is only applicable to a

binary image that is produced by thresholding a gray-scale image. An

unsuitable threshold may under or over segment the image. Here, we

propose a GWDT method for gray-scale image directly. In the conven-

tional distance transform, the distance value for each image pixel is

Fig. 1. Schematic illustration of APP2 neuron tracing method. GWDT: gray-weighted distance transform. In (C) and (D), the reconstructions are color

rendered and overlaid on top of the image data for better visualization. Raw image: Courtesy of Chiang laboratory
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defined as the minimal Euclidean distance to background pixels. In

GWDT, the distance value for each pixel is defined as the sum of

image pixels’ intensity along the shortest path to background. GWDT

was originally introduced by Rutovitz (1968). However, most of the pre-

vious studies of GWDT and the respective implementations (such as the

recently released Matlab toolbox function) were limited to 2D cases,

whereas our method and implementation are general for N-dimensional

data (n¼ 2, 3, . . . ). In the following, we describe our fast implementation

within FM framework.

The distance value defined in GWDT fits the ICDB principle. To use

GWDT, we often use a low threshold value (e.g. the average intensity of

an entire image). Any image pixels that have intensity value no greater

than this threshold are called ‘background pixels’. We first set all image

background pixels as ‘seeds’, then compute the distances from other

pixels to these seed pixels. This process is similar to region growing and

thus is formulated within the FM framework in Section 2.2. Here, the

edge distance between consecutive image pixel vertices is defined as

e x, yð Þ ¼ x� y
�� ���� ��:I yð Þ,

where x is source vertex, y is target vertex, I(y) is the intensity of image

pixel y. Let d(x) denote the distance value of x. In the initialize step, we set

d xð Þ ¼
I xð Þ x 2 fbackgroundg
1 x =2 background

� ��
:

We will set all background pixels as seeds. The neighbor pixels of all seeds

will be set as the initial TRIAL vertices and are pushed into the priority

queue. In the growing step, we will apply the formula,

d xð Þ ¼ min d yð Þ þ I xð Þ
� �

, y� neighbors of x
� �

to refresh the distance value from background to skeleton center.

Automated Soma detection: We find that GWDT method provides a way

to detect the soma position of a neuron. Normally, the soma has the

maximum distance-transformed value (e.g. see results in Section 3.5).

2.4 Initial neuron reconstruction

In APP, the initial neuron reconstruction is essentially produced via find-

ing the single-source (often from the soma) shortest path to all remaining

foreground image pixels. APP uses Dijkstra’s algorithm, which needs to

first build a graph of all foreground pixels and then find the shortest path

from each pixel to the seed. For large 3D image stacks, this approach may

need a large amount of computer memory to hold the graph. In APP2, we

present a new method to use FM to construct the initial reconstruction

(Fig. 2), without the need to create such a large graph.

In our implementation, we add a parental map par on the FM as

described in Section 2.2 to generate the shortest path tree from a single

source s. Initially, the parent of each image pixel x is set to be itself, i.e.

par xð Þ ¼ x. Then, for each neighbor pixel y of s, we set them to have label

‘TRIAL’, and at the same time par yð Þ ¼ s. In the recursive step, for the

minimum pixel x and each of its neighbor y, we set

if y is FAR, then par yð Þ ¼ x;

else if d xð Þ þ e x, yð Þ5d yð Þ, then par yð Þ ¼ x:

The edge distance e(x,y) is defined as the geodesic distance,

e x, yð Þ ¼ jx� y j �
gI xð Þ þ gI yð Þ

2

� �
,

where the first item is Euclidean distance of the two pixels, and gIð:Þ in the

second item is defined in the same form of APP (Peng et al., 2011), where

�I is a coefficient (set as 10 throughout our tests).

gI xð Þ ¼ exp �I 1�
I xð Þ

Imax

� �2
 !

When FM has finished, we can build the initial reconstruction from the

parental map.

In addition to the small working space needed, another useful property

of FM for generating the initial reconstruction is that it can be stopped

easily as needed. We consider two methods in APP2. First, the recursive

step will stop when any background pixel becomes ALIVE. This method

prevents the marching process growing to any irrelevant area. Second, a

user can optionally choose to specify some locations in advance (e.g.

some special termini of a neuron) as additional priors; when all of

these special locations have been labeled as ALIVE, FM stops. The

second method forces FM to reach these specified locations. Both meth-

ods are used in practice to generate complete initial reconstructions that

cover signals as much as possible and thus make it easier to trace broken

pieces or gaps in images.

2.5 Hierarchical pruning

Figure 2 displays examples of initial reconstructions of neurons. They are

tree graphs, eachofwhich has a number of spurs. Thenext step is to find the

main skeleton of the tree by removing the unnecessary or redundant spurs.

Here, we propose a hierarchical pruning method that contains two steps:

a hierarchical segments construction step and a recursive pruning step.

2.5.1 Hierarchical segments construction For simplicity, we call the

initial reconstruction a ‘tree’ in this section. We define a segment in the

tree as a path connecting two branching nodes in the tree. In the hier-

archical segments construction step, we order all segments in the tree

from most important to the least important and thus generate a hierarchy

of them. The ‘importance’ of a segment is defined based on its length. The

longer a segment, the more important it is. Obviously, there is no overlap

between any pair of segments. To get the importance scores, we first find

the longest path from the most distal leaf node to the source node (seed).

We then delete this segment from the tree and find the second longest

segment from the remaining parts in the original tree. We iterate this

process until all segments have been sorted.

We further improve the efficiency of the algorithm as follows. We

observe that in our decomposition of a tree, each hierarchical segment

starts from a leaf node. In addition, there is a one-to-one mapping

Fig. 2. Initial reconstruction based on GWDT and comparison results

with or without GWDT. (A) The main GWDT-based skeleton (the major

mid-curves) of the tracing implies a good tracing. Sphere: the seed loca-

tion. Also shown is the out-of-center problem, where the left figure is

without GWDT preprocessing and the right figure indicates the main

structure goes to the neuron center with GWDT preprocessing. (B) top:

parallel-path problem without GWDT preprocessing; bottom: parallel

paths disappear after GWDT preprocessing
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relationship between each hierarchical segment to a leaf node. Therefore,

in a refined algorithm, we construct the hierarchical segments in a

bottom-up order. First, we detect the segment from each leaf node to

its nearest branch node (excluding the branch node). Each branch node

connects to at least two such segments. Then, we merge the branch node

to the longest segment (called ‘joint-segment’). Next, the other segments

originally connects to the branch node are set as child-segments to the

joint segment. We iterate this joint segment merging process until the seed

node is reached.

2.5.2 Recursive pruning In the pruning step, from the pool of unde-

leted hierarchical segments, we choose one segment at a time following

the importance-score in decreasing order. Then, we extend the signal-

coverage idea in APP to coverage ratio of this segment (see later in the

text). If the coverage ratio is larger than a threshold value (normally

75%), we delete this segment and all its child-segments. Otherwise, we

keep this chosen segment and mask the coverage area of the segment. We

iterate this process until no segment can be removed.

The coverage area of a segment is defined as themerged coverage area of

all nodes in the segment. The coverage area of a node is defined as the

sphere area centered at the node, with an estimated radius of the node,

which is computed using themethod described in Peng et al. (2010b, 2011).

The coverage ratio of a segment is defined as the ratio of the number of

all masked nodes with respect to the total number of nodes in the seg-

ment. Further, we consider image pixels with different intensities should

have different weights. Thus, in our scheme, we use the image-pixel-in-

tensity weighted coverage ratio, which is defined as the sum of intensity of

all masked nodes divided by that of all nodes in the segment.

3 EXPERIMENTAL RESULTS

3.1 Results between GWDT and non-GWDT

We compared the new GWDT step in APP2 to those generated

without GWDT (see Fig. 2). It is clear that when GWDT is not

Fig. 3. Comparison with different neuron tracing methods subject to the deletion noise. The reconstructions are overlaid on top of the original images for

better visualization. The fourth row corresponds to 90% signal is deleted. As it is so dark in this case, we set pixel intensity threshold to 1 so that we are

able to compare all different methods. Right side subfigures: the three difference-scores compared with the ‘ground truth’ reconstruction. NS,

NeuronStudio; ST, SimpleTracing. Images in (A–D) are brightness enhanced by 50% to make them more visible. The color schemes in (E), (F) and

(G) are the same
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used (left of Fig. 2A), the detected skeleton of the neuron is often

skewed to one side of the shape. This is effectively avoided when

GWDT is used (right of Fig. 2A); the respective skeleton best

covers the neurite signal in a balanced way.

Figure 2B shows that for complex branching patterns, the

shortest path algorithm could easily produce ‘parallel paths’

when GWDT is not used (top of Fig. 2B). This problem is

also clearly overcome after GWDT is applied to the image

(Fig. 2B bottom). For this test image, the overall morphology

of the GWDT-based result (Fig. 2B bottom) appears to be more

reasonable than the non-GWDT result.
Of course, when GWDT is not invoked, APP2 can run faster

(Table 2), although the accuracy might be compromised in a way

similar to Figure 2.

3.2 Comparison with other methods

We examined the robustness of APP2 by tracing images where

signal were deleted (Peng et al., 2010b). Three levels of signal

deletion, 30, 60 and 90% were tested (Fig. 3). We compared

APP2 to several previous automated methods in the public

domain, including APP (Peng et al., 2011), NeuronStudio

(Rodriguez et al., 2008) and SimpleTracing (a DT-based tracing

approach, Yang et al., 2013), as well as the ‘ground truth’ recon-

struction, which was obtained by combining semi-automatic tra-

cing and manual editing. To make a fair comparison, the

reported results of competing methods correspond to the best

possible parameters fine tuned in our testing.
We calculated several difference scores of the reconstructions

produced by the automated methods and the ‘ground truth’.

These difference scores measure the ‘spatial distance’ between a

particular reconstruction and the ground truth, as well as the

percentage of reconstruction elements that have significant, i.e.

visible, distance to the nearest reconstruction elements in the

‘ground truth’. These scores, as previously defined in Peng

et al. (2010a), are called entire structure average, different struc-

ture average and percentage of different structure for simplicity

in this article.

Figure 3 shows that APP2 is able to achieve the lowest differ-

ence-scores among all methods. It actually consistently produced

sub-pixel precision compared with other methods, such as

NeuronStudio. For the different structure average score, APP2

and APP are close to each other, but APP2 is better than APP in

the entire structure average and percentage of different structure

scores.
The Supplementary Figures S1–S6, which include additional

comparison examples of various 3D images, also show that

APP2 is better than the other methods.

3.3 Improvement on APP

Figure 3 indicates that the performance of APP2 is better, but

still close to that of APP. Although this observation is antici-

pated, it raises a natural question that how much APP2 will

improve APP. In our design, the biggest difference between

these two methods is how they prune the initial over-reconstruc-

tions. Therefore, we studied the ability of APP2 in pruning the

initial reconstruction. We also compared the running speed of

both methods.

We considered using either APP or APP2 to prune an initial

reconstruction, followed by using the other method (APP2 or

APP) to check whether there is any further redundancy in the

reconstruction that can be removed. After applying this test to

a number of complicated dragon fly neurons, we found that

(Table 1) on average, APP2 is able to prune most redundant

segments in an initial reconstruction tree, leaving a small portion

of redundancy that can be detected by APP. On the other hand,

when we apply APP first, APP2 is still able to remove many tree

Table 1. The numbers of tree-segments pruned by APP2 and APP when

sequentially applying APP2 or APP methods in pruning

Neuron image First APP2 then APP First APP then APP2

APP2 APP APP APP2

OP1 fly 9421 0 9180 246

Chiang fly 42 069 3 34 185 6529

Dragonfly C147 411 0 252 159

Dragonfly C150 10 082 1 6709 3410

Dragonfly C152 662 0 588 74

Dragonfly C154 969 0 598 368

Dragonfly C157 6084 3 2350 3731

Dragonfly C158 60 331 25 44 216 16 499

Dragonfly C159 395 0 266 129

Dragonfly C160 7787 0 2639 5118

Dragonfly C161 45 409 22 31 098 14 606

Dragonfly C162 328 1 293 38

Dragonfly C165 2854 1 744 2108

Dragonfly C168 2537 0 1777 753

Dragonfly C169 981 0 720 253

Dragonfly C171 2260 0 1509 750

Dragonfly C173 2189 0 1662 518

Dragonfly C175 4830 0 3239 1555

Dragonfly C179 1905 0 1378 518

Dragonfly C180 456 0 350 106

Dragonfly C183 195 0 145 50

Dragonfly C188 2785 0 2401 381

Dragonfly C189 383 0 331 55

Dragonfly C190 39 0 25 14

Dragonfly C192 1048 0 832 215

Dragonfly C193 624 0 464 163

Dragonfly C194 1243 0 815 426

Table 2. Comparison of running time (seconds) of APP2 and APP on a

few images

Image APP APP2

(with GWDT)

APP2

(w/o GWDT)

Chiang fly 149.7 28.9 12.6

Dragonfly C154 31.6 6.9 1.6

Dragonfly C168 48.8 7.9 1.9

Dragonfly C171 44.2 10.2 2

Dragonfly C190 32.6 7.6 1.3

Testing is based on a MacPro laptop with 2.6GHz Intel Core i5.
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segments. This shows the advantage of hierarchical pruning. In

this sense, APP2 provides a complementary pruning scheme to

the APP method.

Table 2 summarizes the running speed of APP2 versus APP

for several testing images. It can be seen that APP2 is much faster

on these images.

3.4 Real applications in tracing different neuron images of

different animals and from different laboratories

We tested APP2 on a variety of real neuron datasets, including,

for instance, the fruitfly neurons data used in DIADEM compe-

tition, the flycircuit.org database and Janelia fly imagery data-

base, as well as some challenging dragonfly neuron datasets

(Gonzalez-Bellido et al., 2013) that have heavy noise.
Figure 4 shows a few examples of tracing various datasets:

(i) For images that have uneven image pixel intensity (e.g.

Fig. 4c), APP2 is able to produce a complete reconstruction.

(ii) For images that have fine branches (e.g. Fig. 4d), which

are easy to get missed by other tracing methods, APP2 is

able to detect them reasonably well.
(iii) For a neuron that may contain a big cell body (e.g.

Fig. 4b), APP2 is able to detect the cell body automatically

and therefore reconstruct the entire morphology fully

automatically.

3.5 Large-scale reconstruction of single fruitfly neurons

We applied APP2 to 678 3D 40� confocal images contributed by

Chiang laboratory. Each image contains a single neuron labeled

in a Drosophila brain. We ran both automatic soma detection

and automatic neuron tracing in APP2.
After manual proofreading of the tracing results against the

original images, we found that for automatic soma detection, we

had a success rate 96.6% for this dataset. The failure cases are

mainly due to the insufficient pixel resolution in some of the

images and thus poor separation in dense arborization areas.

For automated neuron tracing, 629 (92.8%) neurons were recon-

structed reasonably well. The unacceptable tracing is mainly due

to the poor image quality, i.e. broken pieces of neurite in the

respective images.
The 629 successfully traced neurons (Fig. 4e) make up one of

the largest automatically traced Drosophila single neuron data-

bases to date. These reconstructions will eventually be docu-

mented in publicly available neuron morphology databases

such as NeuroMorpho.org.

4 CONCLUSION

We present a new neuron-tracing system that contains several

novel algorithms based on FM and hierarchical pruning. We use

the FM method to compute both the initial neuron reconstruc-

tion and the GWDT, and at the same time also improve the

robustness of neuron tracing. Hierarchical pruning sorts the in-

dividual segments of an initial reconstruction tree in a hierarch-

ical order, thus facilitating efficient removal of redundant

segments in the reconstruction. We have compared our new

method to various previous methods on a number of datasets

and found a better performance of the new method in most

cases.
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