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ABSTRACT 

 

High-resolution microscopic imaging of biological samples 

often produces multiple 3D image tiles to cover a large field 

of view of specimen. Usually each tile has a large size, in 

the range of hundreds of megabytes to several gigabytes. 

For many of our image data sets, existing software tools are 

often unable to stitch those 3D tiles into a panoramic view, 

thus impede further data analysis. We propose a simple, but 

accurate, robust, and automatic method to stitch a group of 

image tiles without a priori adjacency information of them. 

We first use a multiscale strategy to register a pair of 3D 

image tiles rapidly, achieving about 8~10 times faster speed 

and 10 times less memory requirement compared to 

previous methods. Then we design a minimum-spanning-

tree based method to determine the optimal adjacency of 

tiles. We have successfully stitched large image stacks of 

model animals including C. elegans, fruit fly, dragonfly, and 

mouse, which could not be stitched by several existing 

methods.  
 

Index Terms— Image Stitching, Phase Correlation, 

Correlation Coefficient, Multiscale Analysis, FFT 

 

1. INTRODUCTION 

 

With the development of modern microscopy, there is a 

growing demand of imaging large and thick 3D biological 

specimens at high resolution. In many cases, the prepared 

samples are too large to fit into the field of view of a 

microscope. Motorized stage has become important to 

image large areas in separate tiles, each containing the 

picture of a piece of the specimen. Although physical 

coordinates from the stage may be recorded and used in 

stitching of all tiles into a panoramic view, there are many 

situations that these coordinates may not be precise enough. 

There are also cases that such physical displacement 

information is not available. Hence, automatic 3D stitching 

of multiple un-organized image tiles is needed.  
Image stitching methods often find a geometric 

transformation to maximize a similarity cost function 
between adjacent images. Many cost functions have been 
proposed for image stitching problems including feature-
based, intensity-based and hybrid approaches [1-3]. Feature-

based methods search for corresponding salient points, 
which are often edge points or corners, in the overlap 
regions of a pair of images. These methods may be sensitive 
to the detection of the salient points and the determination of 
the correspondence among these points. Intensity-based 
methods are to perform a brute-force search of the 
transformation (mapping from one vector space to another) 
space, which can be optimized incorporating multi-
resolution strategies. Hybrid methods combine the 
advantages of both techniques, which make intensity-based 
alignment metrics computation restricted in local regions 
around the detected salient points. 

MosaicJ [1] is a 2D semi-automatic stitching software 

solution in the form of the ImageJ plugin. For stitching a 

pair of images, it can be fully automatic. However, it will be 

time-consuming for aligning a pair of 3D images directly 

extended from its rigid transformation model with a 

rotation. For group-wise image stitching, the stitching of a 

large number of tiles may be prohibitively expensive due to 

its requirement of manual positioning of the tiles. Another 

ImageJ stitching plugin, which distributed as a part of the 

Fiji project [2], is intensity-based automated stitching. It is 

multi-threaded and thus takes advantage of multi-core 

CPUs. However, for large-scale 3D microscopic images of 

our datasets, we find it easily run out of physical memory. 

XuvTools [3] is another automated 3D stitching software 

using a hybrid registration method. It uses multiscale 

strategies for stitching. At a coarse scale, it uses phase-only 

correlation to obtain rough estimation. In the fine scale, it 

detects salient points that would appear in overlap regions, 

followed by aligning the data based on maximizing 

correlation coefficient in a series of small windows around 

the salient points. Since both phase correlation and salient 

points detection may be sensitive to noise, the stitching 

results may not be consistent when choosing different 

scaling factors. Zhao et al also developed a 3D image 

stitching approach, which has been used in applications such 

as tiled fruit fly confocal images (unpublished data). Its 

computational performance is similar to that of the method 

presented in Fiji. For many cases in our testing, it has not 

yet produced ideal results as one would like to have. 

Despite above existing methods, automatic and robust 

stitching of large-scale 3D microscopic images remains 

challenging. We note that for microscopic images, the 
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magnification is usually a constant for all tiles. In addition, 

in most cases, it is not essentially necessary to correct the 

potential lens distortion in imaging. The potential variation 

of orientation of successive tiles is often negligible. Thus, 

the main degree of freedom would be the translation among 

different tiles, as well as potential intensity variation of 

different tiles. Moreover, the order, or configuration, of all 

tiles may be unknown. In this paper, for the above most 

common situation(s) one may encounter in a series of 3D 

image datasets of different model animals, we propose an 

efficient and robust multiscale stitching approach. 

 

2. METHOD 

 

To make this section self-contained, let’s re-state the goal of 

this stitching problem. Given an un-organized set of image 

tiles S = {T1, T2, …TN}, where each Ti, (i=1, 2, …N) is a 3D 

image stack and N is the number of tiles, the goal is to 

automatically determine their order (i.e. the configuration of 

their spatial adjacency) as well the relative displacement of 

adjacent tiles in 3D, with the assumption that there could be 

intensity fluctuation between tiles but other geometrical 

variations are negligible.  

To solve this problem, we consider a two-stage stitching 

approach. The first stage, called pair-wise registration, is to 

best align every possible pair of tiles and thus obtain the 

respective distance score between this pair of images. In this 

step, all possible translations will also be estimated. The 

second stage is called group registration, during which we 

formulate a graph, where each tile is treated as a graph node 

and the edge weight between two tiles “nodes” is chosen as 

the distance of the two tiles. Then from the initial graph we 

compute a minimum spanning tree, which indicates the 

order/configuration of tiles. 

 

 
Fig. 1. Illustration of our stitching method at a fine scale. See Box 1 for 

the notations. Image tiles of C. elegans are shown in this example. Red, 

green and blue in the image: mCherry, GFP, and DAPI staining of cells.  

 

2.1. Pair-wise Registration 

 

There are many ways to best align a pair of image tiles and 

determine their optimal translation. Here we consider the 

image intensity based approach. In this category, a brute-

force approach in the spatial domain would require trying all 

possible displacement of the two images along X, Y, Z three 

dimensions. The best displacement can be defined as the 

location where two images have the smallest overall 

intensity difference, or almost equivalently, the largest 

correlation. In many cases, correlation of two images [4] is a 

good criterion when the baseline intensities of the two 

images are different. Such difference will be naturally 

removed when correlation is used. Thus we seek to find the 

translation that maximizes the correlation of two images.  

Previous studies suggested that both phase correlation 

(PC) [3] and normalized cross-correlation (NCC) (Zhao, 

unpublished data), or their combination [2], can be used in 

stitching 3D images. Suppose we have a generic pair of 

images, t and s. We call t the target and keep it still during 

stitching. We call s the subject and translate it to best match 

the target. PC [5] can be computed efficiently used the fast 

Fourier transform, as shown below  

  

PC(s,t) = F
1 F(s)F

* (t)

F(s)F
* (t)

,

 

where F denotes the discrete Fourier transform, -1 and * 

denote inverse and conjugate transforms respectively. On 

the other hand, NCC is defined in the following way, 

  

NCC(s,t) =
(s s )(t t )

(s s )2 (t t )2
. 

NCC can also be expressed in term of the Fourier transform, 
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In our method, we combine both PC and NCC. Previous 

studies [1, 2, 3] show that NCC is typically more faithful 

due to normalization of the overlapping region, but in the 

extreme cases (e.g. the full image or a single voxel) it won’t 

extrapolate as well as PC. Hence we use PC to find the top 

M candidates (typically M = 8), defined as the best M local 

maxima in the PC map. Then within a small surrounding 

window (typically 3 3 3) of each local maximum, we 

select the locations that yield the largest NCC value. Finally 

the best translation location is chosen as the one that has the 

largest NCC value among the M candidates. We call this 

basic algorithm PCNCC.  

Obviously, to implement of this PCNCC method, we need 

to do only one pass of the forward Fourier transform and 

two passes of the inverse transforms, one for PC and one for 

NCC. We also use pre-computed running sum tables of the 

image and squared image [4] to accelerate the computation. 

Generally speaking, this is efficient. However, we note that 

for large 3D microscopic images each of which has 

hundreds mega-voxels to several giga-voxels, this direct 

implementation may still be slow.  

To further reduce the computational complexity, we 

design a simple but highly effective two-scale hierarchical 
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method to use PCNCC. While these two scales share the 

same PCNCC algorithm, they use different portions of the 

images as their input.  

At a coarse scale, we downsample both t and s 5 times 

along each dimension. As a result, aligning the smaller 

images yield a much faster, but coarse, alignment. This may 

also make the PC peaks spread to more distal locations. In 

this way, we first produce a rough estimation of the 

translation offset-triple (along three axes) of t and s. This 

rough offset-triple is denoted as {dcx, dcy, dcz}.  

Then at a fine scale, we search the optimal offsets, but 

only within a local area that is close to the best location 

estimated in the coarse scale. This method is shown in Fig. 

1. We first find the axis (among X, Y, and Z) for which t 

and s have the smallest overlap, defined by the translation 

offsets dcx, dcy, dcz normalized by the dimensions of image 

tiles. This axis is called the translation axis of interest (TAI). 

Then, within the rough overlapping region we compute a 

key plane, which is orthogonal to the TAI and at the same 

time has the largest image contrast (and thus presumably 

most informative). Next, we extract a local volume of 

interest (VOI) close to the key plane for both s and t. 

Typically such a VOI consists of only 15% of the 

overlapping image planes along TAI, and thus has a very 

small size. We run the same PCNCC algorithm on the VOIs 

extracted from t and s, and obtain the final translation offset. 

Overall, our pair-wise registration algorithm can be 

summarized as Box 1. The novel idea is to use a two-scale 

algorithm to best optimize both PC and NCC values for 

small volumes of the original image tiles. This algorithm is 

about 10 times faster than existing approaches. 

 
Box. 1.  Pair-wise image stitching algorithm. 

 

Input: two tiles s and t 

Output: the displacement between tiles s and t 

// coarse scale 

1: compute phase correlation (PC) using FFT to obtain M peaks as 

translation offset candidates 

2: compute normalization cross correlation (NCC) in small windows 

around M candidates to obtain translation offset estimation (P in Fig.1) 

// fine scale 

3: extract a plane with most foreground information from subject image s 

as the key plane (K in Fig. 1), which is orthogonal to the translation axis 

of interest (TAI) 

4: extract volumes of interests (VOIs, shown as red and green dashed boxes 

in Fig. 1) from s and t corresponding to K 

5: compute PCNCC of VOIs to obtain the final displacement estimation 

 

2.2. Group Registration 

 

Our global approach determines the translation set for all 

tiled images that are connected to the graph where the tiles 

are the nodes and the edges are correlations between 

adjacent image tiles. In the case of without prior knowledge 

of adjacency relationship, this computation cost could be 

very high on the construction of a mosaic by blindly 

attempting to align each tile to the remaining ones. In our 

approach, the geometry topology is established by finding 

single distinctive maximum spanning tree (MST) at a coarse 

scale. This rough alignment from the spanning tree will be 

refined by means of our multiscale pairwise stitching. 

We obtain the optimal configuration (adjacency) via 

solving a maximum spanning tree problem to produce a 

globally optimal alignment of all tiles. The solution gives 

the set of translational offsets with the maximum correlation 

scores between all image pairs. We use Prim’s algorithm [6] 

to find the maximum spanning tree. 

Computation at this stage can be reduced. Indeed, we use 

the NCC values computed at the coarse level of Box 1 

algorithm, instead of the optimal NCC values at the fine 

level, to set the edge weight of the graph. Then after we 

have figured out which pair of tiles would be adjacent, we 

optimize the respective translation offset. 

 

2.3. Other Implementation Issues 

 

We compute the discrete Fourier transform using the well-

known FFTW library [7], which is able to handle a wide 

range of size, dimension and stride of the data vector, and 

also provide in-place transform. 

Microscopic images often come with multiple color 

channels. Typically we choose the color channel with the 

best signal-to-noise ratio by eyes as the reference for 

stitching.  

To fuse the overlapping regions in adjacent tiles, we use 

the average intensity of these regions. This simple method 

works in most cases in our testing of a variety of data. This 

can certainly be extended as linear blending, as in [2]. 

 

3. RESULTS 

 

We applied our approach to various microscopic datasets 

where the specimens were imaged at high resolution. We 

generated and proofread 3D montages of large datasets from 

multiple laboratories containing more than 200 microscopic 

images from mouse brain, Drosophila (Fig. 2), and C. 

elegans. In a comprehensive testing using all these images, 

methods in XuvTools [3] and others often failed or did not 

produce consistent results when choosing different scaling 

factor. Therefore, in the following, we focus on comparing 

our method to Preibisch’s method [2] because it could stitch 

most our 3D microscope images. 

For pairwise image stitching (Fig. 3), it is clearly that for 

our test datasets, our method used at most about 2.5G 

memories for the biggest dataset, whereas method in [2] 

used 16G memory in such a case. The speed of [2] was also 

slow. For instance in the mouse brain test case, that method 

used almost 200 seconds whereas our method used only 20 

seconds. Thus the overall computational complexity of our 

method was about 80 ~ 100 times less than that of [2].  
For group registration (Table 1), our method was able to 

stitch 9 tiles in about 10 minutes, while method in [2] failed.  
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200 μm

 
 

Fig. 2. 3D stitching of a complete Drosophila nervous system, including 

both brain (right) and ventral nerve cord (left), from 15 3D tiles. Our 

stitcher used about 6 minutes to produce this result. The Fiji tool failed in 

this case probably due to a few tiles have very week signal. Green, anti-

Neuroglian (BP104); red, anti-DN-cadherin (DN-EX #8). 

 
For the choice of parameters, we only need to readjust 

sampling factors for 1 out of 30 dataset of C. elegans and 1 
out of 20 dataset of fruit fly brain. 

 

Tiles Stitched Image Size     Timing 

3 1.9GB     1m0s     ours 

      9m20s   Preibisch’s 

6 3.8GB     4m38s    ours 

      37m43s  Preibisch’s 

9 6.0GB     10m13s   ours 

      (Out of memory) Preibisch’s 

 

Table 1.  Illustration of stitching performance on tiled microscopic 

images computed on a Linux machine with Intel® 8-Core CPU (2.66 GHz) 

and 35 GB of RAM. Single tile dimension is 1476 1476 160. 

 

 

4. CONCLUSIONS AND AVAILABILITY 

 

We present a fully automated high-speed multiscale image 

stitching method for large-scale 3D microscopic images. 

The specific stitching strategy yields successful results on 

microscope images. Furthermore, the computational 

complexity of our method, in terms of computing time and 

memory requirement, is much lower than existing methods. 

This may provide a very useful tool for a wide range of 

applications. Our program supports different data types, 

such as 8-bit, 16-bit and 32-bit images.  

    Our stitching method is implemented in C/C++, and is 

provided as plugin of V3D [8] (see link below), which is an 

open source and freely downloadable platform for high-

performance 3D+ image analysis and visualization. The web 

site is http://penglab.janelia.org/proj/v3d. Our stitching 

plugin and tutorial can be found at following the website 

http://penglab.janelia.org/proj/stitching/.
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Fig. 3. Comparison of single-pair image-stitching with Preibisch’s 

method in memory usage and time consumption with different image data 

set.
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