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ABSTRACT 

Motivation: Gene expression patterns obtained by in situ mRNA 

hybridization provide important information about different genes 

during Drosophila embryogenesis. So far, annotations of these im-

ages are done by manually assigning a subset of anatomy ontology 

terms to an image. This time-consuming process depends heavily 

on the consistency of experts. 

Results: We develop a system to automatically annotate a fruitfly!s 

embryonic tissue in which a gene has expression. We formulate the 

task as an image pattern recognition problem. For a new fly embryo 

image, our system answers two questions: 1) Which stage-range 

does an image belong to? 2) Which annotations should be assigned 

to an image? We propose to identify the wavelet-embryo features by 

multi-resolution 2D wavelet discrete transform followed by min-

Redundancy max-Relevance feature selection, which yields optimal 

distinguishing features for an annotation. We then construct a series 

of parallel bi-class predictors to solve the multi-objective annotation 

problem since each image may correspond to multiple annotations. 

Supplementary Information: The complete annotation prediction 

results are available at: http://www.cs.niu.edu/~jzhou/papers/fruitfly 

and http://research.janelia.org/peng/proj/fly_embryo_annotation/. 

The data sets used in experiments will be available upon request to 

the correspondence author.  

Contact: jzhou@cs.niu.edu and pengh@janelia.hhmi.org  

1. INTRODUCTION  

Analysis of in situ gene expression patterns sheds new light on 

understanding the complicated relationship of genes. Recent work 

on automating this process has been reported for several model 

systems including mouse (e.g. Carson, 2005), fruitfly (e.g. Peng 

and Myers, 2004), etc. For fruitfly (Drosophila melanogaster), 

gene expression pattern images during embryogenesis obtained by 

in situ mRNA hybridization provide important spatial-temporal 

functional information. These images contain body structures that 

emerge during certain developmental stages. For investigation of 

genetic regulatory elements, automatic retrieval and clustering 

these images have been found very useful (Peng and Myers 2004; 

Peng et al. 2006; Pan et al, 2006.).  

 

Annotations of these structures are important for the study of Dro-

sophila embryogenesis. So far, the annotations of these fly embryo 

images are done by manually assigning anatomy ontology terms to 

the images (Tomancak et al. 2002). This time-consuming process 

depends heavily on the consistency of experts. With the availabil-

  
*To whom correspondence should be addressed (pengh@janelia.hhmi.org).  

ity of a large number of pattern images in databases such as the 

Berkeley Drosophila Genome Project (BDGP), an automatic and 

systematic annotation approach that can increase the efficiency and 

consistency of the analysis becomes highly desirable. 

 

We develop a system to automatically annotate fruitfly’s embry-

onic tissue in which a gene has expression. We formulate the task 

as an image pattern recognition problem. For a new fly embryo 

image, our system answers two questions: 1) Which stage-range 

does an image belong to? 2) Which annotations should be assigned 

to an image?   

 

One key issue is that the embryonic tissues in which a target gene 

is expressed are often unknown beforehand; therefore an arbitrary 

input image of gene expression pattern may have many different 

ontological annotations associated. From the viewpoint of pattern 

recognition, this means that each input sample may correspond to 

multiple class labels. Given the set of K class labels " = {c1,… 

,cK}, automatic annotation of a fly embryo gene expression image 

is  multi-objective: an input images xi corresponds to a target set ai 

# ". This problem demands a special design for feature extraction 

and classification. There are three major challenges: 

 

a) For the multi-objective problem of embryonic image annota-

tion, features corresponding to an unknown number of tissue 

structures co-exist in the same image. As in the image data 

each image pixel is often regarded as a dimension, the total 

dimensionality equals the number of image pixels, which is 

often very large. How to effectively extract features is critical 

for identifying the discriminating features correlated with dif-

ferent structures. 

b) The sample distribution of our data is heavily skewed. Typi-

cally some ontology terms are commonly used to annotate our 

image samples while many other terms are associated with a 

relatively small number of images. The actual percentages for 

different annotations vary greatly from less than 1% to about 

20%.  

c) The quality and morphology of images vary greatly. Variation 

in embryo morphology, expression pattern staining and image 

orientation increase the difficulty of effective preprocessing 

and registration of the images. In addition, some inconsistent 

or missing annotations make it a nontrivial effort to generate 

an objective evaluation dataset. 

 

This paper proposes the wavelet-embryo feature extraction and 

selection method for fly embryonic images so that various gene-

expressed structures within the same image can be effectively de-

composed and automatically recognized. We use the wavelet de-
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composition scheme to project the original pixel-based embryonic 

images to a new feature domain in order to reveal features at dif-

ferent resolutions and frequency bands. Then we apply the min-

Redundancy Max-Relevance (mRMR) feature selection algorithm 

to identify the optimal distinguishing features for a specific annota-

tion. With this scheme, we then construct a series of parallel bi-

class predictors to solve the multi-objective annotation problem.  

 

We have tested our approach using in situ mRNA expression pat-

terns of 463 fly genes. We compared our method against several 

others and found that the combination of wavelet-embryo-features 

and mRMR feature selection yields promising features for recogni-

tion of gene expression patterns, despite various challenges in the 

input image data. We have generated comprehensive prediction 

tables over the entire course of the embryogenesis for these 463 fly 

genes. Comparison of our results with the expert manual annota-

tions indicates that our paradigm is successful. Our predictions are 

available on the authors' websites.  

2. METHODS 

Our method has three major portions, namely wavelet-embryo 

feature decomposition, feature selection, and recognition of gene 

expression patterns.  

 

2.1 Wavelet-Embryo Features 

With a large number of features coexisting in a single embryonic 

gene expression image, the task of feature extraction is to produce 

a representation that can best characterize this embryo image.  

 

One option to extract features from digital images is to use pixels 

or combination of pixels as candidate features. With the high di-

mensionality of embryonic images, pixel combinations have been 

considered due to its smaller computational load and information 

redundancy (Peng and Myers 2004; Peng et al. 2006; Pan et al, 

2006). For example, eigen-embryo analysis uses principal compo-

nent analysis (PCA) to conduct linear combinations of pixel inten-

sity values and extract the most prominent image features (Peng et 

al. 2006). While eigen-embryo features in conjunction with graph 

partition methods have led to very interesting results in clustering 

gene expression patterns in an unsupervised way, the method 

seems to be less appropriate for the purpose of automatic annota-

tion where features with different levels of prominences need to be 

revealed to characterize various structures coexisting in the same 

image. 

 

In this paper, we propose using the multi-resolution wavelet repre-

sentation for embryo images. Wavelet representation lies between 

the spatial and Fourier domains in the sense that wavelets are lo-

calized in both space and frequency whereas the standard Fourier 

transform is only localized in frequency (Daubechies 1992; Mallat 

1989, Mallat 1999). Multi-resolution representations based on 

wavelet decomposition are effective for identifying and analyzing 

local and multi-scale features from signals or images and have 

been used in other pattern recognition tasks such as face recogni-

tion and image retrieval (Chien and Wu 2002; Manjunath and Ma 

1996). With wavelet-decomposition, a fly embryo image is pro-

jected to a feature space where information is decomposed into 

various frequency bands and different levels of resolutions so that 

features of different structures may be effectively separated.  

 

We use two-dimensional discrete wavelet transform (DWT) to 

extract multi-resolution image features. 2D DWT decomposes an 

image using orthonormal wavelet basis functions. Let the set of 

wavelet basis functions be {$k,n(r1,r2), k, n % Z}, where n is the 

translation factor (when n increases, the wavelet shifts right), and k  

is the dilation factor, which denotes a particular resolution level 

(when k gets smaller, the resolution increases). Let x(r1, r2) repre-

sent the intensity values of embryo image pixels indexed by the 

location vector (r1, r2). We can obtain the wavelet transform coef-

ficient dk,n  as below  (Mallat 1999; Resnikoff and Wells 1998):   

!!"= 212121,, ),(),( drdrrrxrrd
nknk

   

 

In order to construct the two-dimensional orthonormal wavelet 

basis function $k,n(r1,r2) for multi-resolution analysis, we start 

from the following one-dimensional (1D) counterpart. 

 

In multi-resolution analysis theory, the wavelet function !(r) has a 

companion, the scaling function "(r), which approximates the 

signal/image at a specific level of resolution.  The sets of scaling 

and wavelet functions are built by translation and dilation: 
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Intuitively, the scaling function indicates the trend of the 

signal, while the wavelet functions code the details of the images 

that can be added to reconstruct the original signal. Mallat (1989) 

linked orthogonal wavelets and scaling functions to quadrature 

mirror filters in signal processing theory: scaling function "(r) 

produces a smoothed signal as a low-pass filter; wavelet functions 

!(r) catch the high frequency details as high-pass filters.     

Correspondingly, the 2D orthonormal wavelet basis function 

$(r1,r2) is factorized using the scaling function &(r) and mother 

wavelet function '(r) as below : 
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Schematically, each base function in Eq. (1) represents a two-step 

transform process: 1) perform a 1D wavelet transform on each row 

(indexed by r1) of the embryonic image; and then 2) perform the 

transform on each column (indexed by r2) of the result of step one. 

In our experiments, &(r) and '(r) of Daubechies-1 wavelet and 

scaling functions (Daubechies 1992) are used.   

 

With the connection between wavelet base functions and filters 

established by Mallat (1989), we can also view each subspace in 

Eq. (1) as a two-dimensional filter that transforms the original 

image into one of the four components: the low-low (LL), low-

high (LH), high-low (HL) and high-high (HH) parts of the trans-

form. In other words, the wavelet decomposition yields 4 sub-

images at each resolution level. LL filtering is a “smoothing” of 

the original image. The other three at each resolution level are the 

detailed sub-images. Then at level 2, we apply the same analysis to 

the LL subimage, where the wavelets now reveal coarser-grained 

details of the image, and thus achieve the multi-resolution feature 

decomposition.  
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 (a) 

(b) 

Figure 1. 2D wavelet decomposition of a fly embryo gene expression pat-

tern image.  (a) The original in situ mRNA expression pattern image of 

gene CG3400 in embryonic stage 7-8. (b) The wavelet-embryo features 

obtained by applying 2-Level 2D wavelet decomposition. 

 

Figure 1 shows an example of the wavelet-embryo decomposition.   

The LL2 quadrant in the upper left corner of (b) is a smoothing of 

the original image in (a). The other three parts, LH, HL, and HH, 

are detail images at two different resolution levels. The set of coef-

ficients {dk,n} of all sub-images at all resolution levels are used as 

features to characterize an gene expression pattern. In our experi-

ment, k = 0, 1 (correspond to levels 1 and 2 in Figure 1); n = 1, ... 

|r1|*|r2|, where |r1| and |r2| are width and height of the sub-image at 

a specific resolution level. As seen in Figure 1, a subsampling by 2 

is done by DWT on both directions of r1 and r2, so the number of 

coefficients in each subimage is one quarter of that of the input 

image. As a result, the total number of coefficients (features) is 

about the same as the number of pixels of original image. If the 

number of pixels is not exactly a power of 2, then the number of 

coefficients after subsampling is ! "2/|| 1r  or ! "2/|| 2r . For exam-

ple, in the case of  an image of 50(100, the total number of coeffi-

cients is 5050 =25(50(3+13(25(4. 

 

In the rest of the paper, we will use wavelet-embryo features to 

refer to features generated from embryonic images by wavelet 

decomposition. 

 

2.2 min-Redundancy Max-Relevance Feature Selection  

The dimensionality of the wavelet-embryo features is equivalent to 

the number of pixels in an image. It is found that using the full set 

of wavelet coefficients may often lead to inaccurate results for 

several other problems (Mallet et al. 1997; Pitter and Kamarhthi 

1999). In our method, the next step is to select a most characteriz-

ing subset of features that can best discriminate the patterns and 

help annotating embryo images. We consider generating a compact 

feature set with strong discriminating strength for specific annota-

tions using the min-redundancy max-relevance (mRMR) feature 

selection method (Peng et al. 2005). The mRMR feature selection 

algorithm is theoretically formulated as that features should be 

selected to maximize the statistical dependency between the anno-

tation-distribution of image samples and the joint distribution of 

the selected features. Based on information theory, this can be 

factorized as finding features that are mutually far away from each 

other (minimum redundancy) but also individually most similar to 

the distribution of annotations (maximum relevance).  

 

We use mutual information to measure the level of similarity be-

tween features. Let S denote the features subset that we are seeking 

and ) the pool of all candidate features {fi} (they equal {dk,n} in 

the case of wavelet-embryo features). The minimum redundancy 

condition is 

! 

min
S"#

1

S
2

I( f i, f j )
i, j$S

%
 

where |S| is the number of features in S  and I(fi, fj) is mutual in-

formation between fi and fj, 

! 

I( fi, f j ) = p( f i, f j )log
p( fi, f j )

p( f i)p( f j )
dfidf j""

. 

where p(.) is the probabilistic density function. 
 

We again use mutual information I(c, fi) between the target class c 

% {c1,… ,cK} and the feature fi to quantify the relevance of fi for 

the classification task. The maximum relevance condition is to 

maximize the total relevance of all features in S: 

! 

max
s"#

1

S
I(c, f i)

i$S
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To obtain mRMR features, we optimize these two conditions si-

multaneously, in quotient form by 

 

! 

max
S"#
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1

S
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$ ]
i

$
% 
& 
' 

( ' 

) 

* 
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     (2) 

 

The solution of Eq. (2) can be computed efficiently in O(|S|*N) 

time, with N being the total number of features in ).  

 

2.3 Design of the Recognition/Annotation System  

Our automatic annotation system has two tiers. At the first tier, an 

incoming image is assigned to a specific developmental stage in 

the course of fly embryogenesis. Follow the convention of Ber-

keley Drosophila Genome Project (http://www.fruitfly.org), there 

are six stage-ranges: stage 1-3, stage 4-6, stage 7-8, stage 9-10, 

stage 11-12, and stage 13-16.   

 

At the second tier, image ontology annotation terms are assigned to 

an input image. As explained earlier, the problem of annotating 

images is multi-objective, we solve it by decomposing it into mul-

tiple binary subproblems, for each of which we train a classifier to 

predict a particular annotation term based on the one-vs-others 

method. In another word, for a particular annotation term, the 

training samples are associated with labels 1 or 0 depending on 

whether this image sample has this annotation or not in the training 

data. In the testing phase, this trained classifier is responsible for 

predicting whether or not an input image should be associated with 

this image ontology annotation term. In this way, a series of paral-

lel classifiers will determine if an image has any of the annotations 

in the training set.  

 

The trained classifiers also calculate a probabilistic confidence 

score in order to give users a quantitative measure of predictions. 

Since classifiers for different annotations are trained independ-

ently, we are able to add annotation-specific classifiers based on 
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user requirement and/or system complexity constraints, without 

altering previously trained classifiers.   

 

For our problem, one challenge in designing classifiers is that an 

annotation term usually corresponds to only a small portion of 

images. For example, in the evaluation set of genes we collect, 

even the most common annotation terms are associated with only 

about 20% image samples. As a result, for the one-vs-others binary 

classifier, the sample numbers for class 1 (with the annotation) and 

class 0 (without the annotation) are very unbalanced, because most 

samples are labeled as class 0. Therefore, we need to choose a 

classifier that is able to predict  accurately for the small-sample-

number class instead of being biased toward the large class.   

 

We use Linear Discriminant Analysis (LDA) to implement the 

binary annotation classifier. LDA is a commonly used statistical 

algorithm for separating samples of two or more categories (Webb 

2002). It is reported in literature that linear discriminant analysis 

may give better performance than the Quadratic Discriminant 

Analysis (QDA) when true covariance matrices are unknown and 

the sample sizes are small (O’Neill 1992; Webb 2002). Our em-

pirical comparison with the Support Vector Machine (Vapnik 

1995; Chang and Lin 2001) shows LDA has a relatively balanced 

performance on both large and small classes. These observations 

help decide our choice of classifier. (Results are omitted due to the 

space limitation.) 

 

Denote the posterior probability of an image x having an annota-

tion as p(y=1|x), where y (y%{0,1}) is the class label of the image. 

It can be shown that, based on the assumption of multivariate nor-

mal density of LDA, we have  

! 

log p(y =1 | x) = g1(x) + b  

where b is class-independent, and 

! 

g1(x) = log p(y =1) " 1
2
µ1

T
#
"1µ1 + x

T
#
"1µ1  

with µ1 is the sample mean of class 1, ( )
00112

1

01

!+!=!
"+

nn
nn

 is 

the pooled within-class covariance matrix, and n1 and n0 are num-

bers of samples for classes 1 and 0.  g0(x) for class 0 can be calcu-

lated similarly.  Using  

1)|0()|1( ==+= xypxyp   and 

! 

log p(y =1 | x) " log p(y = 0 | x) = g1(x) " g0(x), 

we can then compute p(y=1|x) and p(y=0|x). 

  

For embryonic image annotation, the body part structure with gene 

expression is considered to be present if 1) p(y=1|x) > p(y=0|x); 

and 2) p(y=1|x) > TH, where TH is a threshold set to 0.6 in our 

experiment. p(y=1|x) is the confidence score of the annotation.  

 

Because a gene may be associated to multiple annotations, we can 

aggregate all individual annotation confidence scores as an overall 

rank score, 

! 

rankscore =
pi " f (pi #TH)

i

M

$
% + f (pi #TH)

i

M

$
         (3) 

 

where M is the number of total possible annotations, pi is the con-

fidence score for a particular annotation term, f(·) is the hard-

limiting function with f(u)=1 if u > 0 and otherwise f(u)=0; the 

parameter + on the denominator is mainly for avoiding division by 

zero when no annotation is found to be associated to the image. 

When + is 0, the rankscore is simply the average of the individual 

probabilities for various annotations.  

 

The rankscore of the annotation predictions provides two uses: 1) 

The predicted annotation results can be ranked/sorted based on 

these scores. When the annotation system processes a large number 

of images, most confident predictions with interesting annotation 

results can be quickly identified; 2) Instead of having only a deci-

sion on individual annotations, users will have additional global 

quantitative control of the confidence level. 

3. EXPERIMENTS AND DISCUSSIONS 

In this study, we made use of the mRNA gene expression pattern 

data set of 463 genes generated through our earlier work of gene 

clustering (Peng et al. 2006), which also explains the details the 

image preprocessing methods. In most cases, for each gene, there 

is one representative mRNA expression pattern image determined 

by experts for each of the 6 stage-ranges (stages 1-3, 4-6, 7-8, 9-

10, 11-12, and 13-16) over the entire course of fly embryogenesis. 

We addressed two questions about our computational approach, as 

detailed in Sections 3.1 and 3.2, respectively.  

 

(1) How good is the performance of pattern recognition 

with mRMR wavelet-embryo-features, compared 

against several other possible feature extraction meth-

ods?  

(2) How can the automatic annotation system  be applied to 

real applications?  

 

3.1 Experiment 1 - Evaluation of the mRMR Wavelet-Embryo 

Features 

We compared our scheme with two feature extraction methods:  

 

1) Eigen-embryo decomposition (Peng et al. 2006) that uses 

principal component analysis to extract prominent image 

features.    

2) LeNet features. LeNet, an artificial neural network that 

can extract local image features, is considered as one of 

best machines for pattern recognition (LeCun 1998). We 

used the common structure of LeNet with four hidden 

layers. Outputs of the 4
th

 hidden layer were used as the 

extracted features of an embryo image.  

 

In order to evaluate our feature extraction/selection algorithm, we 

built 10 testing sets using real images drawn from various stage 

ranges. For each stage range, we built 2 different data sets using 

two annotations: in one set, each image has only one of the two 

possible annotations; these annotations will never correspond to 

one image sample at the same time. In another word, these two 

annotations are mutually exclusive (M.E.); thus we call the first set 

the "M.E. set". In the second data set, some images may corre-

spond to two annotations at the same time, i.e., annotations overlap 

and the problem is multi-objective (M.O.). It is thus called the 

"M.O. set", which models the more typically situation in our prob-

lem.  

 

In addition, as we need a scheme working well with unbalanced 

sample sizes, the synthetic sets were built in the way that one an-

notation class has a lot more images than the other: the larger class 

usually doubles or triples the number of images of the smaller 

class. This can be seen from the sample numbers shown in both 

Tables 1 and 2. Overall, with both the M.E set and the M.O. set on 
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each of the 5 stage ranges (stages 4-6, 7-8, 9-10, 11-12, 13-16), we 

produced 10 testing sets listed in Tables 1 and 2. (Note: here we 

did not show results for stage 1-3 because the gene expression 

pattern for stage 1-3 is very easy to classify, as it corresponds to 

only 2 annotations, "maternal" or "none".) 

 
 

Table 1. Recognition Rates (%) of Feature Extraction/Selection Methods on Synthetic Data Sets with Mutually Exclusive (M.E.) Annotations.  Top 

20 eigen features are used. Top 20 features are selected when using mRMR feature selection. RS: Recognition rate on the smaller class only. RA: 

Overall recognition rate on the whole data set for all classes.  (Annotation Short Terms: CB - cellular blastoderm; TMA - trunk mesoderm anlage; PEA - 

posterior endoderm anlage; TMP - trunk mesoderm primordium; PEP - procephalic ectoderm primordium; HPP - hindgut proper primordium; PMP - poste-

rior midgut primordium; EBNS - embryonic central nervous system; VNC - ventral nerve cord.) 

Stage 

Range 

Set 

Size 
Set Details Score 

Eigen- 

Embryo 
LeNet 

LeNet 

+ mRMR 

Wavelet- 

Embryo 

Wavelet Embryo 

+ mRMR 

RS 70 75 70 70 100 
4-6 98 78CB+20Subset 

RA 82 85 83 82 98 

RS 60 50 55 60 100 
7-8 69 49TMA+20PEA 

RA 67 59 80 67 100 

RS 65 50 60 65 100 
9-10 69 49TMP+20PEP 

RA 71 52 83 71 100 

RS 45 50 90 55 95 
11-12 61 41HPP+20PMP 

RA 59 69 90 64 98 

RS 83 58 67 83 100 
13-16 32 20EBNS+12VNC 

RA 84 59 81 84 100 

 
Table 2 Recognition Rates (%) of  Feature Extraction/Selection Methods on Synthetic Data Sets with Multi-Objective (M.O.) Annotations. Short 

terms and testing parameters are the same as Table 1. 

Stage 

 Range 

Set  

Size 
Set Details Score 

Eigen- 

Embryo 
LeNet 

LeNet 

+ mRMR 

Wavelet- 

Embryo 

Wavelet Embryo  

+ mRMR 

RS 49 42 55 49 76 
4-6 152 78CB+20Subset+54Both 

RA 64 63 71 64 82 

RS 45 50 58 45 83 
7-8 89 49TMA+20PEA+20Both 

RA 40 46 62 40 85 

RS 42 34 42 39 79 
9-10 87 49TMP+20PEP+18Both 

RA 49 33 55 47 80 

RS 38 32 59 38 88 
11-12 75 41HPP+20PMP+14Both 

RA 33 36 55 37 89 

RS 57 53 70 57 87 
13-16 97 20EBNS+12VNC+65Both 

RA 55 48 70 55 86 

 
We compared wavelet-embryo features against eigen-embryo 

features and LeNet features. Input images have the size 50*100 

pixels. For eigen-embryo features, we used the top 20 principal 

components based on the best performance tested in the range of 

10-50 principal components. Without feature selection, dimen-

sions of raw LeNet and wavelet features are 3036 and 5050, re-

spectively. For a fair comparison, we also selected 20 top LeNet 

and wavelet-embryo features using mRMR. These comparison 

schemes are shown in Tables 1 and 2, where we report recogni-

tion rates using Leave-One-Out Cross-Validation (LOOCV) and 

the LDA classifier (Section 2.3). LOOCV uses each image as a 

testing sample while the remaining images are used to train the 

classifier, and sums up all errors in testing. 

 

Tables 1 and 2 list the recognition rates of these 5 feature extrac-

tion/selection methods on M.E. and M.O. sets, respectively.  

Since the data sets are unbalanced, we report both the recognition 

rate on the small annotation class only (RS in Tables 1 & 2) and 

the overall recognition rate (RA in Tables 1& 2).  

 

We have several major observations from Tables 1 and 2:   

 

1) Both result tables consistently show that, in both M.E. and 

M.O. situations, mRMR selected wavelet features delivers a 

superior performance than all 4 other types of features. For 

example, in Table 1 we see that while eigen-features, LeNet 

features, and wavelet features without mRMR selection lead 

to 50%~80% recognition accuracy, the mRMR wavelet-

embryo features consistently yield close to 100% accuracy. 

This indicates the combination of wavelet-embryo features 

and mRMR feature selection is excellent to obtain the most 

distinguishing feature sets. We thus used mRMR wavelet-

embryo features in our annotation system. 

2) Feature selection is essential for the success of the proposed 

used of wavelet-embryo features. Using all wavelet coeffi-

cients turned out to be redundant and led to less accurate re-

sults, which is comparable to using eigen-embryo features, 

than using mRMR wavelet-embryo features. On the other 

hand, applying mRMR feature selection on LeNet features 

did not achieve as good results, which shows that wavelet 

decomposition does capture more discriminative informa-

tion from embryo images.  

3) Our results confirm that the multi-objective (M.O.) recogni-

tion problem is harder than the mutually exclusive (M.E.) 

situation. Recognition rates in Table 2 are in general lower 

than those in table 1. This shows the difficulty of building 

the automatic annotation system for fly embryo pattern im-

ages that are usually multi-objective. 

4) Comparing the RA and RS recognition rates of the mRMR 

wavelet-embryo features we can see that the two numbers 

are often very close to each other. This indicates with the 
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good features, the LDA classifier works effectively on un-

balanced data sets without being biased toward the larger 

class significantly. Thus we used LDA as the classifier in 

our automatic annotation system.   

 

 

3.2 Experiment 2  -  Evaluation of the overall automatic anno-

tation system  

We applied the best performing features, mRMR-selected wave-

let-embryo features, to evaluate our two-tier automatic annotation 

system for gene expression images. The evaluation set consists of 

expression patterns of all 463 genes extracted from the BDGP 

gene expression database (http://www.fruitfly.org).  

 

• Tier 1: An input gene expression pattern image is automati-

cally assigned to a stage-range using our algorithm.    

 

This is a mutually exclusive six-class recognition problem since 

an image belongs to one and only one stage range out of six pos-

sibilities – stages 1-3, 4-6, 7-8, 9-10, 11-12 and 13-16. For each 

image, we used top 20 wavelet-embryo features selected by 

mRMR. 10-fold cross validation was used to report the recogni-

tion rate. This commonly used method randomly separates the 

our data set as 10 portions, each is iteratively used as a test set 

while the remaining 9 subsets are used in training the classifier. 

The final recognition rate is computed based on the total error 

tested using all portions.  

 

As shown in the confusion matrix of prediction and detailed pre-

diction table in the supplement materials, for all our pattern im-

ages, we achieved the recognition rate of 99.55% using wavelet-

embryo features and LDA classifier. This number indicates that 

our system can assign an incoming image to one of the six stage-

ranges in a very reliable way.  

 

• Tier 2:  Once an image is assigned to a stage range, our sys-

tem automatically assigns annotation terms to it. This is a 

multi-objective problem for which we developed binary 

classifiers for every annotation of interest.   

 

Top 20 mRMR-selected wavelet-embryo features were used in 

training each LDA classifier. As a quantitative assessment of the 

results, LOOCV is used to produce the prediction accuracy.  

 

The annotation system produces three pieces of information for 

each testing image:  

1) The decision whether the specific annotation is consid-

ered "present" in this image;  

2) The estimation confidence score of each annotation;  

3) The rankscore of all annotations given to this image. 

 

These results are presented In Table 3. Genes are sorted so that 

embryo images with the most confident annotation predictions 

are shown at the top. Entries with a probabilistic confidence score 

lower than 0.6 are marked with a dash "-" to indicate that our 

system did not predict the respective annotation is "present" in 

this image. The complete annotation tables for all embryogenesis 

stages are available on authors’ websites as supplements. Table 3 

shows partial annotation results of stages 11-12. The top 30 

ranked genes with their expression pattern images are listed to-

gether with their probabilities of having any of the most popular 

5 annotations "present" at the specific stage range. The supple-

mentary materials include prediction results of a larger set of 

annotations varying from 10 to 18 annotations per stage range.  

 

It can be seen from the result table that the majority of our auto-

matic annotations are consistent with the expert's annotations 

stored in the BDGP database. This is evident that our system is a 

meaningful effort to address this challenging problem.  

 

Our system can successfully recognize patterns and annotations 

for some pretty poor images in term of the blur and deformation, 

such as the patterns of gene CG12157 (row 27), CG4608 (row 

29), all of which are successfully annotated without any error.  

 

It is also worth noting that the BDGP database may have some 

missing annotations such as row 12 in Table 3 (gene bowl, 

CG10021) for stages 11-12. In this case, our system is still capa-

ble of predicting some gene expression image-structures, which 

are likely to be correct if we visually compare them with other 

genes with similar annotations. For example, for this gene bowl 

our system predicts it has two annotations PMP and AMP; when 

we check other genes like CG10535, CG33071, etc, with the 

same annotations, we can see similar patterns visible in the re-

spective images. This suggests that the automatic annotation 

system may be used to fill missing annotations for existing data-

bases besides being used for annotating newly collected pattern 

images.  

4. CONCLUSIONS 

In this paper we have proposed a practical paradigm to recognize 

and automatically annotate in situ gene expression patterns of fly 

embryos by combining the minimum redundant wavelet-embryo 

features and a two-tier classification system. We have achieved 

promising results using patterns of the entire embryogenesis 

course of 463 fly genes.  
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Table 3. Predicted annotations for images at stage 11-12. Short Terms: HPP: hindgut proper primordium; PMP: posterior midgut primordium; AMP: ante-

rior midgut primordium; PP: protocerebrum primordium; DEP: dorsal epidermis primordium. 

 

Annotation Terms 
 Gene Name 

Pattern Im-

age 

Rank 

Score HPP PMP AMP PP DEP 

Our Automatic Anno-

tations 

Manual Annotations 

from BDGP Experts  

1 CG10535 
 

0.95 - 1 1 - - PMP; AMP PMP; AMP 

2 CG3224 
 

0.94 - 0.98 1 - - PMP; AMP PMP; AMP 

3 CG33071 
 

0.94 - 0.97 0.99 - - PMP; AMP PMP; AMP 

4 CG9322 
 

0.94 0.99 - - - 0.97 HPP; DEP HPP; DEP 

5 Dl (CG3619) 
 

0.94 0.97 1 1 0.95 0.9 
HPP; PMP; AMP; 

PP; DEP 

HPP; PMP; AMP; PP; 

DEP 

6 Toll-6 (CG7250) 
 

0.94 - - - 0.99 0.99 PP; DEP PP; DEP 

7 Wnt4 (CG4698) 
 

0.94 0.99 - - 0.95 0.96 HPP;PP; DEP HPP;PP; DEP 

8 yellow-e3 (CG17045) 
 

0.94 0.99 - - 0.94 1 HPP;PP; DEP  HPP;PP; DEP 

9 CG32685 
 

0.93 - - 0.96 0.98 - AMP; PP; AMP; PP; 

10 CG9836 
 

0.93 0.99 0.94 0.94 - - HPP; PMP; AMP; 
Annotations are missing 

in BDGP 

11 TXBP181-like (CG2072) 
 

0.93 - 0.98 0.97 - - PMP; AMP PMP; AMP 

12 bowl (CG10021) 
 

0.93 - 0.98 0.98 - - PMP; AMP 
Annotations are missing 

in BDGP 

13 bys (CG1430) 
 

0.93 - 0.99 1 - 0.88 PMP; AMP; DEP PMP; AMP 

14 CG6361 
 

0.92 - 0.94 0.95 - 0.97 PMP; AMP; DEP PMP; AMP; DEP 

15 CG7993 
 

0.92 0.89 0.95 0.99 - - HPP; PMP; AMP PMP; AMP 

16 GATAe (CG10278) 
 

0.92 - 0.97 0.97 - - PMP; AMP PMP; AMP 

17 Ugt36Bc (CG17932) 
 

0.92 - 0.94 1 - - PMP; AMP PMP; AMP 

18 car (CG12230) 
 

0.92 - 0.95 0.99 - - PMP; AMP PMP; AMP 

19 dbo (CG6224) 
 

0.92 0.97 - - 0.96 - HPP; PP HPP; PP 

20 CG13126 
 

0.92 - 0.97 0.95 - - PMP; AMP PMP; AMP 

21 CG33099 
 

0.91 0.85 0.97 1 - - HPP; PMP; AMP AMP 

22 CG10440 
 

0.91 - - - 0.96 0.95 PP; DEP PP 

23 Ip259 (CG5277) 
 

0.91 0.82 1 0.99 - - HPP; PMP; AMP HPP; PMP; AMP 

24 NetA (CG18657) 
 

0.91 - - - 1 - PP PP 

25 Pfrx (CG3400) 
 

0.91 - 0.96 0.95 - - PMP; AMP PMP; AMP 

26 SP555 (CG14041) 
 

0.91 - - - 1 - PP PP 

27 Tom40(CG12157) 
 

0.91 1 - - - - HPP HPP 

28 Ugt37b1 (CG9481) 
 

0.91 - - - 1 - PP PP 

29 bnl (CG4608) 
 

0.91 - - - - 1 DEP DEP 

30 fkh (CG10002) 
 

0.91 0.89 0.94 0.98 - - HPP; PMP; AMP HPP; PMP; AMP; PP 

 




