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Abstract

Selecting a small subset of genes out of the thousands of 
genes in microarray data is important for accurate classifica-
tion of phenotypes. Widely used methods typically rank genes 
according to their differential expressions among phenotypes 
and pick the top-ranked genes. We observe that feature sets so 
obtained have certain redundancy and study methods to mini-
mize it. Feature sets obtained through the minimum redundancy 
– maximum relevance framework represent broader spectrum 
of characteristics of phenotypes than those obtained through 
standard ranking methods; they are more robust, generalize 
well to unseen data, and lead to significantly improved classifi-
cations in extensive experiments on 5 gene expressions data 
sets.

1. Introduction 

Discriminant analysis is now widely used in bioinformat-
ics, such as distinguishing cancer tissues from normal tis-
sues [2] or one cancer subtype vs another [1], predicting 
protein fold or super-family from its sequence [7][12], etc. 
A critical issue in discriminant analysis is feature selection: 
instead of using all available variables (features or attrib-
utes) in the data, one selectively chooses a subset of fea-
tures to be used in the discriminant system. There are a 
number of advantages of feature selections: (1) dimension 
reduction to reduce the computational cost; (2) reduction of 
noises to improve the classification accuracy; (3) more in-
terpretable features or characteristics that can help identify 
and monitor the target diseases or function types. These 
advantages are typified in DNA microarray gene expres-
sion profiles. Of the tens of thousands of genes in experi-
ments, only a smaller number of them show strong correla-
tion with the targeted phenotypes. For example, for a two-
class cancer subtype classification problem, 50 or so such 
informative genes are usually sufficient [10]. There are 
even studies which suggest that a few (1 or 2) genes are 
sufficient [17][28]. Thus computation is reduced while ac-
curacy is increased via effective feature selection. When a 
small number of genes are selected, their biological rela-
tionship with the target diseases is more easily identified. 
These "marker" genes thus provide additional scientific 
understanding of the problem. Selecting an effective and 
more representative feature set is the subject of this paper.  

There are two general approaches to feature selection: fil-
ters and wrappers [14][16]. Filter type methods are essentially 
data pre-processing or data filtering methods. Features are se-
lected based on the intrinsic characteristics, which determine 

their relevance or discriminant powers with regard to the tar-
geted classes. Simple methods based on mutual information [4], 
statistical tests (t-test, F-test) have been shown to be effective 
[10][6][8][19][25]. More sophisticated methods were also de-
veloped [15][3]. They also have the virtue of being easily and 
very efficiently computed. In filters, the characteristics in the 
feature selection are uncorrelated to that of the learning meth-
ods, therefore they have better generalization property. In wrap-
per type methods, feature selection is "wrapped" around a learn-
ing method: the usefulness of a feature is directly judged by the 
estimated accuracy of the learning method. One can often obtain 
a set with a very small number of non-redundant features 
[14][5], which gives high accuracy, because the characteristics 
of the features match well with the characteristics of the learning 
method. Wrapper methods typically require extensive computa-
tion to search the best features. 

2. Minimum Redundancy Gene Selection

One common practice of current filter type methods is to 
simply select the top-ranked genes, say the top 50 [10]. More 
sophisticated regression models or tests along this line were also 
developed [23][20][27]. So far, the number of features, m, re-
tained in the feature set is set by human intuition with trial-and-
error, although there are studies on how to more objectively 
determine m based on certain assumptions on data distributions 
[17]. A deficiency of this simple ranking approach is that the 
features could be correlated among themselves [13]. If gene gi is 
ranked high for the classification task, other genes highly corre-
lated with gi are also likely to be selected by the filter method. In 
a number of studies [17][28], it is frequently observed that sim-
ply combining a "very effective" gene with another "very effec-
tive" gene often does not form a better feature set. One reason is 
that these two genes could be highly correlated. This raises the 
issue of "redundancy" of feature set. 

The fundamental problem with redundancy is that the fea-
ture set is not a comprehensive representation of the characteris-
tics of the targeted phenotypes. There are two aspects of this 
problem. (1) Efficiency. If a feature set of 50 genes contains 
quite a number of mutually highly correlated genes, the true 
"independent" or "representative" genes are therefore much 
fewer, say 20. We can delete the 30 highly correlated genes 
without effectively reducing the performance of the prediction; 
this implies that 30 genes in the set are essentially "wasted". (2) 
Broadness. Because the features are selected according to their 
discriminative powers, they are not maximally representative of 
the original space covered by the entire dataset.  The feature set 
may represent one or several dominant characteristics of the 
targeted phenotypes, but these could still be narrow regions of 
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the relevant space covering the targeted phenotypes. Thus the 
generalization ability of the feature set could be limited. 

Based on these observations, we propose to expand the 
space covered by the feature set by requiring that features are 
maximally dissimilar to each other, for example, their mutual 
Euclidean distances are maximized, or their pairwise correla-
tions are minimized. These minimum redundancy criteria are of 
course supplemented by the usual maximum relevance criteria 
such as maximal mutual information with the targeted pheno-
types. We therefore call this approach minimum redundancy – 
maximum relevance ("MRMR" for short). The benefits of this 
approach can be realized in two ways: (1) with the same number 
of features, we expect the MRMR feature set to be more repre-
sentative of the targeted phenotypes, therefore leading to better 
generalization property; (2) equivalently, we can use a smaller 
MRMR feature set to effectively cover the same space that a 
larger conventional feature set does. 

The main contribution of this paper is to point out the im-
portance of minimum redundancy in gene selection and provide 
a comprehensive study. One novel point is to directly and ex-
plicitly reducing redundancy in feature selection via filter ap-
proach. Our extensive experiments indicate that features se-
lected in this way lead to higher accuracy than features selected 
via maximum relevance only. 

3. Criterion Functions of Minimum Redundancy

3.1. Minimum Redundancy - Maximum Relevance for 

Categorical (Discrete) Variables 

If a gene has expressions randomly or uniformly distributed 
in different classes, its mutual information with these classes is 
zero. If a gene is strongly differentially expressed for different 
classes, it should have large mutual information. Thus we use 
mutual information as a measure of relevance of genes.  

For discrete/categorical variables, the mutual information I
of two variables x and y is defined based on their joint probabil-
istic distribution p(x,y) and the respective marginal probabilities 
p(x) and p(y):
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For categorical variables, we use mutual information to 
measure the level of "similarity" between genes. The idea of 
minimum redundancy is to select the genes such that they are 
mutually maximally dissimilar. Minimal redundancy will make 
the feature set a better representation of the entire dataset.  Let S
denote the subset of features that we are seeking. The minimum 
redundancy condition is 
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where we use I(i,j) to represent I(gi,gj)  for notational sim-

plicity, and |S| is the number of features in S.

To measure the level of discriminant powers of genes when 
they are differentially expressed for different targeted classes, 
we again use mutual information I(h,gi) between targeted 
classes h={h1,h2,…,hK} (we call h the classification variable) 
and the gene expression gi. Thus I(h,gi) quantifies the relevance 

of gi for the classification task. Thus the maximum relevance 
condition is to maximize the total relevance of all genes in S:
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where we refer to I(h,gi) as I(h,i).  

The minimum redundancy – maximum relevance feature 
set is obtained by optimizing the conditions in Eqs.(2) and (3) 
simultaneously. Optimization of these two conditions requires 
combining them into a single criterion function. In this paper we 
treat the two conditions equally important, and consider two 
simplest combined criteria:  

)max( II WV ,   (4) 
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Our goal here is to see whether the MRMR approach is effec-

tive in its simplest forms. More refined variants can be easily 

studied later on. 

Exact solution to the MRMR requirements requires O(N|S|)
search to obtain (N is the number of genes in the whole gene set, 

). In practice, a near optimal solution is sufficient. In this pa-
per, we use a simple heuristic algorithm to resolve this MRMR 
optimization problem.  

Table 1: Different schemes to search for the next feature in 

MRMR optimization conditions. 
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In our algorithm, the first feature is selected according to 
Eq. (3), i.e. the feature with the highest I(h,i). The rest features 
are selected in an incremental way: earlier selected features re-
main in the feature set. Suppose we already select m features 
(genes) for the set S, we want to select additional features from 
the set S = S (i.e. all genes except those already selected). 
We optimize the following two conditions: 

),(max ihI
S

i

,   (6) 

),(min
||

1 jiI
Sj

S
S

i

.   (7) 

The condition in Eq. (6) is equivalent to the condition in Eq. (3), 

while Eq. (7) is an approximation of the condition of Eq. (2). 

The two combinations of Eqs. (4) and (5) for relevance and 

redundancy lead to the selection criteria of a new feature:  

(1) MID: Mutual Information Difference criterion, 
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(2) MIQ: Mutual Information Quotient criterion,  

as listed in Table 1. These optimizations can be computed effi-

ciently in O(|S| N) complexity.  

3.2. Minimum Redundancy - Maximum Relevance for 

Continuous Variables  

For continuous data variables (or attributes), we can choose 
the F-statistic between the genes and the classification variable 
h as the score of maximum relevance. The F-test value of gene 
variable gi in K classes denoted by h has the following form 
[6][8]:  
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where g  is the mean value of gi in all tissue samples, 
kg is 

the mean value of gi within the kth class, K is the number of 

classes, and )(])1([ 22 Knn kk
k

 is the pooled vari-

ance (where nk and k are the size and the variance of the 

kth class). F-test will reduce to the t-test for 2-class classi-

fication, with the relation F=t2. Hence, for the feature set S,

the maximum relevance can be written as:
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The minimum redundancy condition may be specified in 
several different ways. If we use Pearson correlation coefficient 
c(gi,gj) = c(i,j), the condition is 
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where we have assumed that both high positive and  high nega-

tive correlation mean redundancy, and thus take the absolute 

value of correlations. 

We may also use Euclidean distance d(i,j) = d(gi,gj) (we 
choose the L1 distance in this paper). The minimum redundancy 
condition can be specified as 
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Furthermore, instead of using "dissimilarity" or distance, 
we may use "similarity" or inverse distance to measure redun-
dancy. The minimum redundancy condition is 
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Now the simplest MRMR optimization criterion functions 
involving above conditions are:  

(1) FCD: combine F-test with correlation using difference, 

max(VF – Wc);   

(2) FCQ: combine F-test with correlation using quotient, 

max(VF / Wc).

(3) FDM: combine F-test with distance using multiplication, 

max(VF Wd);

(4) FSQ: combine F-test with similarity using quotient,  

max(VF / Ws).

We use the same linear incremental search algorithm as in 
the discrete variable case in §3.1. Assume m features have al-
ready been selected; the next feature is selected via a simple 

linear search based on the criteria listed in Table 1 for the above 
four criterion functions.  

4. Class Prediction Methods

4.1. Naïve-Bayes (NB) Classifier  

The Naïve Bayes (NB) [18] is one of the oldest classifiers. It is 

obtained by using the Bayes rule and assuming features (vari-

ables) are independent of each other given the targeted classes. 

Given a tissue sample s with gene expression levels  {g1, g2,

…, gm} for the m features, the posterior probability that s be-

longs to class hk is

)|()|( ki
Si

k hgpshp ,  (13) 

where p(gi|hk) are conditional tables (or conditional density) 

learned in training using examples. Despite the independence 

assumption, NB has been shown to have very good classifica-

tion performance for many real data sets, especially for docu-

ments [18], on par with many more sophisticated classifiers.  

4.2. Support Vector Machine (SVM)  

SVM is a relatively new and promising classification method 

[24]. It is a margin classifier that draws an optimal hyperplane in 

the feature vector space; this defines a boundary that maximizes 

the margin between data samples in two classes, therefore lead-

ing to good generalization properties. A key factor in SVM is to 

use kernels to construct nonlinear decision boundary. We use 

linear kernels. 

Standard SVM is for 2 classes. For multi-class problems, one 

may construct a multi-class classifier using binary classifiers 

such as one-against-others or all-against-all [7]. Another ap-

proach is to directly construct a multi-class SVM [11][26]. In 

this paper, we used the Matlab version of LIBSVM [11]. 

5. Experiments 

5.1. Data Sets  

To evaluate the usefulness of the MRMR approach, we 
carried out experiments on fives data sets of gene expression 
profiles. Two expression data sets popularly used in research 
literature are the leukemia data of Golub et al [10] and the colon 
cancer data of Alon et al [2]. As listed in Table 2, both leukemia 
and colon cancer data sets have two classes. The colon dataset 
contains normal tissue samples and cancerous tissue samples. In 
the leukemia dataset, the target classes are leukemia subtypes 
AML and ALL. Note that in the leukemia dataset, the original 
data come with training and test samples that were drawn from 
different conditions. Here we combined them together for the 
purpose of leave-one-out cross validation. 

Although two-class classification problems are an impor-
tant type of tasks, they are relatively easy, since a random choice 
of class labels would give 50% accuracy. Classification prob-
lems with multiple classes are generally more difficult and give 
a more realistic assessment of the proposed methods. In this 
paper, we used three multi-class microarray data sets: NCI 
[21][22], lung cancer [9] and lymphoma [1]. The details of these 
data sets are summarized in Table 3. We note that the number of 
tissue samples per class is generally small (e.g. <10 for NCI 
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data) and unevenly distributed (e.g. from 46 to 2 in lymphoma 
data). This, together with the larger number of classes (e.g., 9 for 
lymphoma data), makes the classification task more complex 
than two-class problems. These five data sets provide a compre-
hensive test suit. 

Table 2. Two-class datasets used in our experiments 

DATASET LEUKEMIA COLON CANCER

SOURCE Golub et al (1999) Alon et al (1999) 

# GENE 7070 2000 
# SAMPLE 72 62 

CLASS CLASS NAME # SAMPLE CLASS NAME # SAMPLE

C1 ALL 47 Tumor 40 

C2 AML 25 Normal 22 

Table 3. Multi-class datasets used in our experiments 

DATASET NCI LUNG CANCER LYMPHOMA

SOURCE
Ross et al (2000) 

Scherf et al (2000) 
Garber et al (2001) Alizadeh et al (2000) 

# GENE 9703 918 4026 

# SAMPLE (#S) 60 73 96 

# CLASS 9 7 9 

CLASS CLASS NAME # S CLASS NAME # S CLASS NAME # S

C1 NSCLC 9 AC-group-1 21
Diffuse large 

B cell lymphoma 
46

C2 Renal 9 Squamous 16
Chronic Lympho. 

leukemia 
11

C3 Breast 8 AC-group-3 13 Activated blood B 10

C4 Melanoma 8 AC-group-2 7
Follicular 

lymphoma 
9

C5 Colon 7 Normal 6
Resting/ 

activated T 
6

C6 Leukemia 6 Small-cell 5
Transformed

cell lines 
6

C7 Ovarian 6 Large-cell 5 Resting blood B 4

C8 CNS 5  Germinal center B 2

C9 Prostate 2  Lymph node/tonsil 2

5.2. Assessment Measure 

We assess classification performance using  the "Leave-
One-Out  Cross Validation" (LOOCV). CV accuracy provides 
more realistic assessment of classifiers  which generalize well to 
unseen data. For presentation clarity, we give the number of 
errors in LOOCV in figures and tables. 

In experiments, we compared the MRMR feature sets 
against the baseline feature sets obtained using standard mutual 
information, F-statistic or t-statistic ranking to pick the top m
features. To assess the MRMR features, we used up to 60 genes 
for NB and up to 100 genes for SVM. 

5.3. Results for Discrete Features 

We thresholded the observations of each gene expression 
variable using  (standard deviation) and  (mean): any data 
larger than + /2 were transformed to state 1; any data between 

/2 and + /2 were transformed to state 0; any data smaller 
than /2 were transformed to state -1. These three states cor-
respond to the over-expression, baseline, and under-expression 
of genes. We applied the feature selection methods and per-
formed LOOCV using NB on the 5 datasets. A summary of the 
results is shown in Table 4, where due to the space limitation we 
only list results of m=3,6,…,60.  

For NCI data, with 36 MRMR MIQ features, we attained 1 
LOOCV error, or (60 1)/60=98.3% accuracy. In the baseline 
feature sets, the best case has 10 errors.  

For lung cancer dataset, the MRMR feature set also outper-
formed the baseline substantially. The best MRMR MIQ fea-
tures leads to 2 errors or (73 2)/73 =97.3% accuracy. The best 
baseline result is 8 errors. 

For lymphoma data, MRMR features out-performed base-
line features significantly. The best MIQ feature set leads to 3 
LOOCV errors, or an accuracy (96 3)/96 = 96.9%. In contrast, 
the best baseline feature set leads to 17 errors.  

For leukemia data, MRMR performed well for all feature 
selection methods, with zero LOOCV errors.  

For colon data, MRMR features also show clear improve-
ments over baseline features. For example, a 9-gene MRMR 
MIQ feature set has LOOCV error 4, in contrast to the LOOCV 
error of 7 in the best case of baseline features.  

Figure 1. (a)~(c) for NB: (a) Relevance VI, (b) redundancy WI and 

(c) LOOCV error using NB for the case of discrete variables. 

(d)~(f) for SVM: (d) relevance VF, (e) redundancy Wc and (f) the 

LOOCV error using SVM for the case of continuous variables. 

Dataset: NCI. 

In summary, for multi-class problems with 7~9 classes, 
MRMR feature sets lead to LOOCV error rates of 2~3%. In 
contrast, error rates of baseline features are 11~18%. This dem-
onstrates the effectiveness of MRMR feature selection over the 
baseline method, and NB is an accurate classification method. 
We emphasize that the features selected according to mutual 
information in MRMR are independent of NB, and thus do not 
directly aim at producing the best results in NB. We expect 
these MRMR feature sets will produce similar good results us-
ing different classification methods.  
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To better understand the effectiveness of the MRMR ap-
proach, we calculated the average relevance VI and average 
redundancy WI (see Eqs.(3) and (2)) and the LOOCV error, as 
plotted in Fig. 1 (a)~(c). In Fig.1, the relevance reduces for MID 
and MIQ, but the respective redundancy also reduces consid-
erably. This is most clearly seen for MIQ. The fact that the MIQ 
feature set is the most effective illustrates the importance of 
reducing redundancy, the central theme of this research. 

5.4. Results for Continuous Features 

We directly classified the continuous features using the 
SVM classifier. We pre-processed the data so each gene has 
zero mean value and unit variance. The feature selection meth-
ods were applied; based on the obtained feature sets, SVM was 
trained and LOOCV was performed. Table 5 lists the LOOCV 
results of the 3 multi-class problems. The relevance, redundancy 

and LOOCV error results for the NCI data are also plotted in 
Fig.1 (d)~(f). A quick look at Table 5 indicates the improvement 
of MRMR feature set over baseline is not as pronounced as that 
for the discrete cases in Table 4. However, the improvement is 
still visible, consistent and statistically significant. For NCI data, 
one can see FCQ results are consistently better than baseline 
results. FCQ features achieve the best error rate of 12/62, vs the 
best error rate of 15/62 for baseline features. 

To compare the results in a statistically consistent way, we 
did a sign test based on classification results with the feature set 
size m=1,2,…,100 (only a limited number of results are shown 
in Table 5). If MRMR features caused less (equal, or more) 
errors than the baseline features, we gave it "+" ("=", or " ").  
Thus for FCQ features, for 61 different feature set sizes, FCQ is 
better than baseline; for 11 feature set sizes, FCQ is equally 

Table 4.  LOOCV errors using Naïve Bayes for 5 datasets. 

DATASET
             m

METHOD       
3 6 9 12 15 18 21 24 27 30 36 42 48 54 60 

BASELINE 29 26 20 17 14 15 12 11 11 13 13 14 14 15 13 

MID 28 15 13 13 6 7 8 7 7 5 8 9 9 8 10 NCI

MIQ 27 21 16 13 13 8 5 5 4 3 1 1 1 1 2 

BASELINE 29 29 24 19 14 15 10 9 12 11 12 12 10 8 9 

MID 31 14 12 11 6 7 7 7 8 6 6 6 6 5 5 LUNG

MIQ 40 29 17 9 5 8 6 2 4 3 3 2 4 4 3 

BASELINE 38 39 25 29 23 22 22 19 20 17 19 18 18 17 17 

MID 31 15 10 9 9 8 6 7 7 7 4 7 5 5 8 LYMPHOMA

MIQ 38 26 17 14 14 12 8 8 6 7 5 6 4 3 3 

BASELINE 1 0 1 0 1 2 2 2 1 1 1 3 3 2 3 

MID 1 0 0 0 0 0 0 1 1 1 1 2 1 1 1 LEUKEMIA

MIQ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BASELINE 10 7 8 8 8 9 8 9 8 9 9 9 9 10 9 

MID 8 10 7 7 7 7 8 8 7 7 7 7 7 7 7 COLON

MIQ 12 6 4 5 7 7 7 7 8 8 7 7 7 7 7 

Table 5. LOOCV errors for continuous multi-class data using SVM. The sign test statistics are explained in the text. 

ALL 100 FEATURES
DATASET          m 

METHOD
5 10 20 30 40 50 60 70 80 90 100 

+ = R

BASELINE 33 27 23 20 17 16 15 15 18 18 18 -- -- -- -- 

FCD 37 22 20 19 19 18 16 14 13 14 13 53 20 27 0.26 

FCQ 33 25 23 19 18 16 18 12 12 12 12 61 11 28 0.33 

FDM 33 26 22 19 16 16 14 14 14 14 14 66 22 12 0.54 

NCI

FSQ 28 21 20 17 17 14 14 14 14 14 13 79 17 4 0.75 

BASELINE 25 18 9 8 9 9 8 7 8 8 8 -- -- -- -- 

FCD 15 11 7 7 6 6 7 7 5 6 8 93 6 1 0.92 

FCQ 19 11 7 7 5 6 7 6 5 6 8 90 7 3 0.87 

FDM 26 15 10 8 9 10 8 9 6 6 8 41 34 25 0.16 

LUNG

FSQ 18 16 11 7 7 9 9 7 6 7 7 57 27 16 0.41 

BASELINE 26 16 13 6 7 5 7 6 6 7 6 -- -- -- -- 

FCD 21 11 9 8 6 4 5 4 6 6 5 72 24 4 0.68 

FCQ 25 6 9 7 7 6 4 3 3 2 2 80 8 12 0.68 

FDM 16 10 9 8 8 5 6 5 6 6 5 69 15 16 0.53 

LYMPHOMA

FSQ 18 11 7 9 7 6 6 6 6 6 5 65 21 14 0.51 

Table 6. LOOCV errors for continuous 2-class datasets using SVM. The sign test statistics are explained in the text. 

FIRST 20 FEATURES ALL 50 FEATURES
DATASET

          m 

METHOD
2 4 6 10 20 30 40 50 

+ = R + = R

BASELINE 3 2 3 2 3 3 4 1 -- -- -- -- -- -- -- -- 

TCD 3 3 3 2 5 1 1 1 3 4 3 0 12 10 3 0.36 

TCQ 3 2 1 0 1 1 1 1 8 2 0 0.8 18 3 4 0.56 

TDM 3 4 3 3 4 2 2 1 2 3 5 -0.3 6 12 7 -0.04 

LEUKEMIA

TSQ 3 4 3 4 1 2 1 1 5 3 2 0.3 13 10 2 0.44 

BASELINE 10 11 9 10 13 10 9 8 -- -- -- -- -- -- -- -- 

TCD 10 7 7 8 8 8 13 14 8 2 0 0.8 12 3 10 0.08 

TCQ 10 8 7 10 5 13 12 15 6 3 1 0.5 9 3 13 -0.16 

TDM 10 9 10 9 12 10 10 11 6 3 1 0.5 9 7 9 0 

COLON

TSQ 10 7 7 9 11 7 12 13 9 1 0 0.9 15 5 5 0.40 
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good as baseline; and for 28 feature set sizes, FCQ results are 
worse than baseline. Therefore, we say FCQ is better than the 
baseline with a confidence of R=(61 28)/100=0.33. These sign 
statistics show that MRMR features are better than the baseline 
significantly and consistently. 

For lung cancer data, MRMR features also consistently 
give lower errors than the baseline features, as the sign tests 
show. The FCQ feature set of 40 genes achieves an error rate of 
5/73, in contrast to the best error rate of 7/73 of baseline features 
with 70 genes.  

For lymphoma data, MRMR features also consistently give 
lower errors than the baseline features. FCQ features achieve an 
error rate of 2/96, in contrast to the best error rate of 5/96 of 
baseline.

For the two-class problems, we used the two-sided t-
test selection method, i.e., we imposed the condition that in 
the features selected, the number of features with positive t-
value is equal to that with negative t-value. Compared to 
the standard F-test selection, since F=t2, two-sided t-test 
gives more balanced features whereas F-test does not guar-
antee the two sides have the equal number of features. The 
MRMR feature selection schemes of the F-test (as shown 
in Table 1) can be modified to use two-sided t-test. We 
denote them as TCD (vs FCD) and TCQ (vs FCQ) 
schemes. Table 6 lists the results of LOOCV for these 2-
class datasets. We see that MRMR TCQ features improve 
classification, especially at small number of features. The 
sign tests for the first 20 features (i.e. 10 pairs of two-sided 
features) show 6 out of the 8 MRMR feature selection 
methods outperform the baseline feature selection. Note 
that in the original paper, Golub et al [10] used a prediction 
strength feature selection that is close to the two-sided t-
test. Using their feature set, SVM gives a LOOCV error of 
4, whereas our feature sets with 50 genes (i.e. 25 pairs) lead 
to only 1 error.

6. Discussions  

Experiment results suggest that MRMR features are more 
effective for discrete variables with smaller number of features 
than for continues variables with larger number of features. This 
can be seen in the following two observations: (1) Fig. 1 show 
that the reduction of redundancy in MRMR feature sets is more 
pronounced for discrete variables than for continuous variables. 
(2) The effectiveness of MRMR is more pronounced in the re-
gion of small feature set sizes. If we use the feature sets of 1000 
genes, the difference between the MRMR approach and the 
baseline approach will not be large. For gene selection, small 
feature set is of practical importance.  

Our extensive tests, as shown in Tables 4 ~ 6, also show 
that discretization of the gene expressions leads to clearly better 
classification accuracy than the original continuous data. 
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