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ABSTRACT 
 
Determining the relationship between structure (i.e. morphology) 
and function is a fundamental problem in brain research. In this 
paper we present a new framework based on Bayesian clustering 
methods for the voxel-wise statistical morphology-function 
analysis of registered MR images. We construct a Bayesian 
network to automatically identify the significant associations 
between voxel-wise morphological variables and functional 
variables, such as cognitive performance. A Bayesian latent 
variable induction method is applied to locate the homogeneous 
association regions on registered maps of morphological 
variables. Experimental results on images with simulated atrophy 
confirm that the new method outperforms conventional statistical 
method, based on linear statistics.  
 

1. INTRODUCTION 
 
One of the most important tasks in medical imaging research is 
morphology-function analysis, which aims to identify the 
structures (from a medical-image collection of subjects) that 
possess statistical associations to the functionality (i.e. clinical 
variables) of the respective subjects. Many different approaches 
[1,3-7,10-13] have been proposed for generating statistical maps 
that identify groups of voxels for which significant correlations 
exist among morphological and clinical measurements. Given 
some types of the morphological measurement, e.g. density maps 
in a stereotaxic space [1,3,7,10], morphology-function analysis 
can be basically described as comparison of these morphological 
measurements (i.e. registered images of a group of subjects) and 
generation of Regions Of Interest (ROIs) that have statistical 
associations to the functional variables (i.e. clinical variables) of 
these subjects. For this purpose, our work in this paper is to 
present Bayesian clustering methods to generate the statistically 
optimal ROIs, as shown in Fig.1. 

Fig.1 is a schematic framework of the morphology-function 
analysis, where the input data D include the morphological 
measurement maps of MR images and the corresponding clinical 
functionality-records of a collection of subjects. The outputs are 
the ROIs statistically associated with these functionality-records. 
For example, the data D can be described in terms of voxel-wise 
morphological variables and functional variables. In the 
experiments of this paper, we select the input image data as the 
RAVENS (Regional Analysis of Volumes Embedded in 

Stereotaxic Space) density maps [7] of MR images, in which the 
image brightness within any structure is proportional to the 
actual volume of the structure before registration. (Note: The 
RAVENS maps are generated via mass-preserving high-
dimensional elastic transformations [7,10] that register 
individual images to a template. If a structure is compressed 
during this transformation, because it is larger in the individual 
compared to the template, then the tissue density in this structure 
will increase, so that the total amount of tissue is preserved. 
Accordingly, the brightness of RAVENS maps will increase.) 
These RAVENS maps can be overlaid and analyzed on a voxel-
wise basis [3]. The clinical (i.e. functional) variables have states 
such as "normal", "abnormal", etc, depending on specific 
imaging studies. 

 

 
Fig. 1 Schematic illustration of the Bayesian morphology-
function analysis. Top left shows a discrete map of the 
continuous RAVENS maps [3,7,10] at the bottom-left. 
Final result is a number of clusters (e.g. A and B), each 
associated with the functional (clinical) variable (e.g. a and 
b) in different ways. 
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As shown in Fig.1, our method is based on Bayesian 
clustering techniques to accomplish the middle steps. 
Essentially, we identify the association ROIs based on a 
clustering method of constructing Bayesian networks (BNs) from 
data; meanwhile a Bayesian latent variable induction method [2] 
is used to locate the homogeneous association regions in each 
association cluster. Basically, this framework is generally 
applicable to many different medical imaging applications; in 
this paper we only show an example with brain MR images.  

Of note, conventionally this task has been accomplished via 
standard linear statistical tests, e.g. t-tests (TT), paired t-tests 
(PT), and ANOVAs, many of which suffer from a major 
drawback that a mechanism to locate nonlinear association 
patterns of the interaction of ROIs is not considered. Another 
drawback is that many statistical tests require the definition of a 
subjective confidence interval, or p-value threshold, which is not 
always easy to determine. As shown in this paper, our approach 
can overcome both difficulties.  

This paper is arranged as follows. Section 2 introduces our 
methods concisely. Section 3 shows the experimental results. 
Section 4 gives a brief conclusion. 
 
 

2. METHODS 
 
We present Bayesian clustering methods for two steps in Fig.1, 
i.e. Bayesian network construction, and homogeneous associa-
tion determination, as presented consequently.  
 
2.1 Handle Continuous Voxel Variables: Bayesian Clustering 
for Data Discretization 
 
The key part of our morphology-function analysis method is to 
identify the ROIs based on a Bayesian network construction 
algorithm (as explained in next subsection); for the purpose of 
nonlinear computation of Bayesian networks, the input data to 
the Bayesian network construction algorithm should be discrete 
[8]. Since the input data (e.g. RAVENS maps) are continuous, 
we must discretize the data. We use the z-score thresholding 
method in data discretization. That is, for any voxel-wise data, 
we calculate the mean value and compare each case to the mean 
value; the result label takes 1 when a case has a larger value than 
the mean value, otherwise takes 0. 
 
2.2 Identify Association Clusters: Heuristic Bayesian 
Network Construction 
 
The essence of our approach is to construct a Bayesian network 
that captures the statistical associations between the voxel 
variables and the functional variable(s). In this setting, both 
voxel variables and the functional variable(s) are nodes in a 
Bayesian network and associations among them are represented 
by edges. If an edge is favored by the input data, there is an 
association between corresponding pair-wise nodes. Given the 
fixed variable set, different combinations of edges actually mean 
different Bayesian network structures; hence the problem of 
discovering associations can be expressed as construction of the 
best Bayesian network structure S that represents the input data 
D. The Bayesian score [8], i.e. likelihood of the occurrence of 
the data given a specific structure, is used to approximate the 
posterior probability of this structure given the data, under the 

assumption of a uniform prior. Because of the hundreds of 
thousands of voxel variables in medical image data, it is 
impractical to compare all possible structures; the following 
heuristic algorithm is thus proposed to identify clusters of voxels 
that have similar associations with a functional variable. 
 

 
Fig. 2 The Bayesian network constructed by our algorithm. 
 

Suppose that initially we have a voxel-wise defined 
morphological variable set V and a Bayesian network structure S 
with the functional variable f. As long as V is not empty, the 
search algorithm repeats the following 5-step loop: First, for 
each variable vi in V the algorithm compares the pair-wise 
Bayesian networks {S ∪ [vi → f]} and S, which stand for 
structures with and without the edge from vi to f, respectively, to 
decide if vi is associated with f. A voxel-function association is 
defined as that the structure {S ∪ [vi → f]} has a larger Bayesian 
score than the structure S; otherwise we conclude that vi is 
independent of f. Second, among all voxel variables with voxel-
function associations we select the voxel variable v*, which has 
the strongest voxel-function association, as the "representative 
association variable" of the current loop. The strength of a voxel-
function association is indicated by the difference of the 
logarithm Bayesian scores of {S ∪ [vi → f]} and S. Third, in V 
the algorithm finds the subset of voxel variables that are 
conditionally independent of f given the current representative 
association variable v*. This voxel variable subset is called the 
"c-set". Here voxels are likely to be strongly associated with v*, 
since they are conditionally independent of f given v*. Fourth, 
the algorithm applies a latent-variable induction Bayesian 
clustering method (as explained in next subsection) to the c-set 
to isolate a subset (called the "e-set") in which voxel variables 
have approximately equal voxel-function associations (i.e. 
conditional probabilistic distributions) with the current 
representative association variable v*. That is, in the e-set all 
voxels have homogeneous associations to the functional variable 
f. The union of the e-set and the current representative 
association variable v* is regarded as the functional region of the 
current loop. Finally, the algorithm replaces S with {S ∪ [v* → 
f]}, and removes all variables in the e-set and the representative 
association variable v* from the voxel variable set V.  

In each loop, this algorithm outputs regions that have 
homogeneous associations to the functional variable(s). The final 
Bayesian network has a structure similar to that shown in Fig.2, 
where a few representative association variables v*1, v*2, … 
represent all other association voxel variables {…, v*1i, …} and 
{…, v*2i, …}, …, respectively. The functional region of the jth 
loop, i.e. the aggregate of v*j and {v*ji, i=1,2,…}, is the cluster of 
association voxels for that loop. The corresponding ROIs are 
then obtained by observing the spatial groups of voxels in that 
aggregate.  



In Fig.2 we see that the Bayesian network approach results 
in a hierarchy of functional ROIs; this is different from 
conventional morphology-function analysis methods (i.e. based 
on standard statistical tests). This hierarchical structure indicates 
that the importance of an ROI is evaluated based on the 
previously found ROIs. On the contrary standard statistical tests 
that evaluate the importance of each voxel in an isolated manner 
may not detect nonlinear associations induced by interaction 
among regions.  
 
2.3 Determine Homogeneous Associations: Bayesian 
Latent Variable Induction 
 
In the fourth step of the Bayesian network construction 
algorithm, we detect voxel variables that are "equivalent" to the 
current representative association variable, v*. We refer to such 
"equivalence" as that two variables v and u have the same 
number of states, and there is p(v|u)≈p(u|v)≈1 for every state. In 
our approach, the equivalent variables of v*j, i.e. {v*ji, i=1,2,…} 
as shown in the left top of Fig.2, are only searched in the 
corresponding c-set. We employ an approach similar to 
Chickering [2], which uses a Bayesian-network latent variable 
induction scheme to categorize cases of data, to detect variables 
with similar conditional-probability distributions (i.e. homoge-
neous associations). First, we transpose the data of the c-set 
variables as a pseudo data set; that is, the positions of variables 
and cases are exchanged. Then within the latent-variable 
induction scheme [2] a Monte Carlo approximation is used 
(because of its good accuracy) to estimate the posterior of data 
given the induced parameters. After the Monte Carlo iterations 
converge we find all variables with the same latent-variable state 
as v*, and put these variables in the equivalent association voxel 
set, i.e. e-set. 

 
2.4 Parameter Selection  
 

As opposed to conventional statistical methods, in this 
Bayesian framework, there is no subjective parameter to be set; 
on the contrary, all parameters can be decided automatically. 
However, in the homogeneous association determination, the 
number of states of the latent variable can be specified in 
advance to reduce some computation. We can also adjust such a 
parameter, denoted as rL, in the experiment for the purpose of 
comparison of different methods.  

 
3. EXPERIMENTAL RESULTS 

 
Due to the space limitation only partial results are shown in this 
paper. We used a simulated atrophy data set [3] of cerebral MR 
images (T1-weighted gradient-echo SPGR images; 3D sizes are 
256×256×129 voxels; voxel resolution is 0.9375mm×0.9375mm 
×1.5mm) of 11 normal elderly subjects. We manually selected 
two gyri, the right precentral gyrus (PCG) and the left superior 
temporal gyrus (STG), in all subjects and introduced a 30% 
uniform contraction into the labeled gyri, thereby creating 11 
additional images with localized atrophy in these gyri. The 
labeled region of each subject is called the atrophy mask. Hence 
we have a group of 11 subjects without atrophy and another 
group of 11 subjects with atrophy. We defined the respective 
states of the functional variable as normal and abnormal. We 

obtained RAVENS density maps of these 22 images by using the 
STAR algorithm [7]. Because the STAR algorithm preserves the 
brain mass of each image, the atrophic regions in the abnormal 
group of images have smaller mean intensity than those for the 
normal group of images. As is customary in voxel-based 
morphometry, a Gaussian kernel (9mm diameter for the reported 
results) is utilized to smooth RAVENS maps and reduce 
registration error. Then we down-sampled each image by a factor 
of 2, and cropped it with the largest brain-region bounding box 
across all images to reduce the computational burden of the 
analysis. The final image size is 74×91×65.  

 

  
(a) Ground truth of PCG 
atrophy  

(b) Ground truth of STG 
atrophy 

  
(c) Detection result of PCG 
atrophy 

(d) Detection result of STG 
atrophy 

Fig. 3 Comparison of the detection results versus the 
ground truth locations of atrophy.   

 
We applied the z-score thresholding method to discretize 

the 22 RAVENS maps. The discrete data, 22 binary maps and 
respective 22 values for the functional variable, are input to the 
Bayesian network construction algorithm. The resulting ROIs of 
our Bayesian methods are visually compared with the ground 
truth atrophy-masks in Fig.3, where we overlapped the atrophy-
masks and the result ROIs on a subject's brain for visualization. 
Our method successfully detected the atrophic regions (on both 
PCG and STG) that are associated with the functional states of 
subjects, although due to the complexity of brain structures and 
imperfectness of the image registration method, the ground truth 
and the detection results differ minimally. 
  
Table 1. SDR and SNR results for different parameters 
with the non-smoothed atrophy-mask. BC is our Bayesian 
Clustering method; TT is t-test; tTT is the confidence 
threshold of the t-map. 

rL 2 3 4 5 
SDR 0.9488 0.9401 0.9041 0.9126 BC 
SNR 0.0909 0.1359 0.1869 0.1741 
tTT 3 5 10 15 
SDR 0.7822 0.4483 0.0903 0.0087 TT 
SNR 0.1859 0.3640 1.4748 17 

 



Theoretically a Receiver Operating Characteristic (ROC) 
curve analysis is equivalent to the SDR/SNR (Signal-Detection-
Ratio and Signal-Noise-Ratio) analysis; for convenience the 
obtained SDRs and SNRs (using the standard definitions) with 
practical parameters in our experiments are shown in Table 1.  
The respective results of the standard t-test method are also 
compared. Our method outperforms the conventional t-test 
method in SDR. Notably, when both methods have similar SNRs 
(i.e. rL=5 and tTT=3), the SDR of our method is much better than 
that of t-test. Of note, in this study due to the complexity of data 
and the smoothing applied, there are surrounding areas detected 
around the ground-truth locations, which causes SNRs to be less 
than 1. 
 

4. CONCLUSIONS 
 
In this paper we have described a Bayesian framework for 
morphology-function analysis; particularly, we propose an 
algorithm for Bayesian network construction to identify 
significant morphology-function associations; for this purpose, a 
Bayesian latent variable induction method can be used to locate 
homogeneous associations for representative associations found 
by the Bayesian network construction algorithm. This method 
outperforms the t-test in our experiment on simulated data. We 
plan to extend our framework to effectively detect other 
morphology-function associations between image data and 
categorical variables. 
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